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Overview
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• PeerAiD proposes using the peer, which interactively learns with the 
student during adversarial distillation.

① Adversarial example generation ② Weight optimization
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[ CIFAR-100 result ]

Background
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• Limitations in the previous works
• The pretrained robust teacher model keeps losing its ability to defend 

against adversarial examples (𝑥𝑠
∗) of the student model.
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• Peer Tutoring
• Adversarial Example Generation.
• The student model uses the predictions of the peer model as guidance.
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• Peer Tutoring
• Weight Optimization.
• The student and the peer transfer their own knowledge to each other.

Peer Model
: Forward : Backward: Input
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• Peer Tutoring
• Weight Optimization.
• The student and the peer transfer their own knowledge to each other.
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• Peer Tutoring
• Weight Optimization.
• The student and the peer transfer their own knowledge to each other.

Peer Model
: Forward : Backward: Input

Proposed Method

Natural Image (𝑥)

Minimize

𝐾𝐿

𝐶𝐸

Consistent guidance 

for both the peer and the student.
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• Peer Tutoring
• Weight Optimization.
• The student and the peer transfer their own knowledge to each other.

Peer Model
: Forward : Backward: Input
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The peer learns 𝑥𝑆
∗ directly.

⇒ It becomes a specialist defender.
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• Peer Tutoring
• Weight Optimization.
• The student and the peer transfer their own knowledge to each other.
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Experimental Results
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• TinyImageNet result
• PeerAiD shows the highest AutoAttack robust accuracy compared to other 

baselines, while also providing higher clean accuracy.
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• Characteristic of the peer model
① Specialist who defends against adversarial examples of the student model.

• No tradeoff between the robustness and clean accuracy.

② High clean accuracy 

[ CIFAR-100, ResNet-18 result ]

• 𝑅𝑜𝑏𝑓 ⋅  : the robust accuracy of 𝑓.

• 𝑆 : the student model.

• Peer’s Clean acc : 75.63 > 75.48 (Naturally trained)
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Conclusion
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• We propose a novel online adversarial distillation method, PeerAiD

• The peer model specializes in defending against the student model’s attack samples.

• PeerAiD improves AA robust accuracy by 1.66%p and clean accuracy by 4.72%p.

Jaewon Jung @ Seoul National University

Email: jungjaewon@snu.ac.kr

Code: https://github.com/jaewonalive/PeerAiD

Thanks!


	슬라이드 1: PeerAiD: Improving Adversarial Distillation  from a Specialized Peer Tutor
	슬라이드 2: Overview
	슬라이드 3: Overview
	슬라이드 4: Overview
	슬라이드 5: Overview
	슬라이드 6: Overview
	슬라이드 7: Overview
	슬라이드 8: Background
	슬라이드 9: Proposed Method
	슬라이드 10: Proposed Method
	슬라이드 11: Proposed Method
	슬라이드 12: Proposed Method
	슬라이드 13: Proposed Method
	슬라이드 14: Proposed Method
	슬라이드 15: Experimental Results
	슬라이드 16: Experimental Results
	슬라이드 17: Conclusion

