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Overview

* PeerAiD proposes using the peer, which interactively learns with the

student during adversarial distillation.
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. Overview &

* PeerAiD proposes using the peer, which interactively learns with the
student during adversarial distillation.
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. Overview &

* PeerAiD proposes using the peer, which interactively learns with the
student during adversarial distillation.
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Overview &

* PeerAiD proposes using the peer, which interactively learns with the
student during adversarial distillation.
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Background

Limitations in the previous works

e

The pretrained robust teacher model keeps losing its ability to defend
against adversarial examples (x.) of the student model.
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Proposed Method A

* Peer Tutoring
* Adversarial Example Generation.
. The student model uses the predictions of the peer model as guidance.
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Proposed Method {45?%

* Peer Tutoring
* Weight Optimization.

The student and the peer transfer their own knowledge to each other.
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Proposed Method {%&

* Peer Tutoring
* Weight Optimization.
The student and the peer transfer their own knowledge to each other.
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Proposed Method f#&

* Peer Tutoring
* Weight Optimization.

The student and the peer transfer their own knowledge to each other.
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Proposed Method {%&

* Peer Tutoring
* Weight Optimization.

The student and the peer transfer their own knowledge to each other.
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Proposed Method {%&

* Peer Tutoring
* Weight Optimization.

The student and the peer transfer their own knowledge to each other.
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Experimental Results éié?%

* TinylmageNet result

* PeerAiD shows the highest AutoAttack robust accuracy compared to other
baselines, while also providing higher clean accuracy.
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Experimental Results

e

Characteristic of the peer model

D Specialist who defends against adversarial examples of the student model.
* No tradeoff between the robustness and clean accuracy.

2 High clean accuracy
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Rob¢(+) : the robust accuracy of f.
S : the student model.

Peer’'s Clean acc : 75.63 > 75.48 (Naturally trained)
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Conclusion {%&

* We propose a novel online adversarial distillation method, PeerAiD
* The peer model specializes in defending against the student model’s attack samples.

*  PeerAiD improves AA robust accuracy by 1.66%p and clean accuracy by 4.72%p.
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Jaewon Jung @ Seoul National University
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