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You want an efficient model 
for real-world task deployment. 

What does it look like?
#Blocks? Kernel size? Attn heads? Hidden dimensions? DW-Sep Conv? Mixed Query Attention? …

Hands off approach: AutoML NAS

Issue: 
Still too many architectures.

Is there a better way to approach?

Bender and Liu et al., 2020
TuNAS, CVPR’20

“…a surprisingly large 
number of subnetworks 
(>1019) that can fit different 
hardware platforms…”

Cai et al., 2020
Once for All, ICLR’20



We answer in the affirmative with AutoBuild

Broad Idea: Consider modules, not architectures.

Why do this?
• Combinatorial

What do we do?

Example Stages from SDv1.5
A – Attention; R – ResNet Blk



Challenge: How to do if with end-to-end metrics?

Preliminary: Graphs and GNNs
• 𝑎𝑟𝑐ℎ, 𝑝𝑒𝑟𝑓 = (𝐺!, 𝑦!)
• Learn 𝑦′! = 𝐺𝑁𝑁(𝐺!)

Intermediate workings: Node and Graph Embeddings
• 𝐺𝑁𝑁 𝐺 = 𝑀𝐿𝑃 ℎ"# ; ℎ"# = !

$!
∑%∈$! ℎ%

#

• m is hop-level => ℎ%# represents an entire subgraph/module!

Key learning constraint: if 𝑦! > 𝑦', then ℎ"" !
> ℎ"# !



Experimental Results:
Enhancing NAS with Restricted Search Space

MBv3 - GPU



Experimental Results:
Stable Diffusion v1.4 Inpainting
Randomly sample 68/800k archs to learn from.

Aim to minimize FID
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Thank you for watching ‘till the end!
See you in Seattle!


