

Building Optimal Neural Architectures using Interpretable Knowledge

Keith G. Mills^{1,2}, Fred X. Han², Mohammad Salameh², Shengyao Lu¹, Chunhua Zhou³, Jiao He³ Fengyu Sun³ and Di Niu¹

¹Dept. ECE, University of Alberta ²Huawei Technologies Canada Co., Ltd ³Huawei Kirin Solution, Shanghai, China

You want an *efficient* model for real-world task deployment. What does it look like?

#Blocks? Kernel size? Attn heads? Hidden dimensions? DW-Sep Conv? Mixed Query Attention? ...

Hands off approach: AutoML NAS

Issue: Still too many architectures.

Is there a better way to approach?

We answer in the affirmative with AutoBuild

Broad Idea: Consider modules, not architectures.

Why do this?

Combinatorial

R R R R R R Α R Α Α Α Α 6,1 6,2 2,2 6,1 2,1 2,1 2,2 2,d 6.2 6,3 6,3 6,u

> Example Stages from SDv1.5 A – Attention; R – ResNet Blk

Challenge: How to do if with end-to-end metrics?

Preliminary: Graphs and GNNs

- $(arch, perf) = (G_1, y_1)$
- Learn $y'_1 = GNN(G_1)$

Intermediate workings: Node and Graph Embeddings

•
$$GNN(G) = MLP(h_G^m); \ h_G^m = \frac{1}{|V_G|} \sum_{v \in V_G} h_v^m$$

• *m* is hop-level => h_v^m represents an *entire* subgraph/module!

Key learning constraint: if $y_1 > y_2$, then $\|h_{G_1}\|_1 > \|h_{G_2}\|_1$

Experimental Results: Stable Diffusion v1.4 Inpainting

Randomly sample 68/800k archs to learn from. Aim to *minimize* FID

Arch Set	Eval Archs (68)	Exhaustive Search (4)	AutoBuild (4)
Ave. FID	22.13	10.82	10.13
Best FID	10.54	10.29	9.96

(a) Original (b) ES (c) AutoBuild

Building Optimal Neural Architectures using Interpretable Knowledge

Thank you for watching 'till the end! See you in Seattle!

