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INTRODUCTION METHOD RESULTS

We reveal the remaining issues of previous GCNs
Motivation

 Catastrophic Forgetting of skeletal topology 
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Unconnected joints are ignored Bone connectivity is not preserved
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Contribution
• Identifying and restoring the overlooked skeletal 

topology in advanced GCNs via novel topological 
encoding schemes. 

• Devising BlockGC, an efficient and powerful graph 
convolutional block. 

• Establishing new state-of-the-art performance on 
standard benchmarks.
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Dynamic Topological Encoding: we adopt the differentiable vectorization  on 
the barcodes.and project the obtained representation to GCN hidden layers’ feature space through a mapping 

 at each layer: 

Ψ0 : {𝒟0
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p} → ℝ|𝒱|×d′￼
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Static Topological Encoding: we encode the relative distance between joints on the skeletal graph   , using 
measures like Shortest Path Distance (SPD) or level structure distance.

𝒢S

   with  Bij = edi, j
di, j = min

P∈Paths(𝒢S) { P ∣ P1 = vi, P P = vj}

We propose BlockGC, which efficiently models high-level semantics, reducing computation and parameters while 
outperforming previous methods. The feature dimension is divided into  groups, with spatial aggregation and 
feature projection applied in parallel within each group. The formula is as follows:
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Visualization of barcodes
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CodeLink: https://github.com/ZhouYuxuanYX/BlockGCN Barcodes of "brush hair" (top) and "shake hands" (bottom).

Performance vs. Model Size

Our BlockGCN improves over previous methods 
w.r.t. both performance and efficiency.


