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INTRODUCTION

Motivation

We reveal the remaining issues of previous GCNs

Catastrophic Forgetting of skeletal topology
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Skeletal Topology

Unconnected joints are ignored Bone connectivity is not preserved

Inefficient multi-relational modeling
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Contribution

* Identifying and restoring the overlooked skeletal
topology in advanced GCNs via novel topological
encoding schemes.

* Devising BlockGC, an efficient and powerful graph
convolutional block.

* Establishing new state-of-the-art performance on
standard benchmarks.

T Internship at CMU. Equal contribution.
* Corresponding author.

CodeLink: https://github.com/ZhouYuxuanY X/BlockGCN

BlockGCN: Redefine Topology Awareness for

Skeleton-Based Action Recognition

Yuxuan Zhou' Xudong Yan" Zhi-Qi Cheng* Yan Yan Qi Dai Xian-Sheng Hua

METHOD

Dynamic Topological Encoding
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Static Topological Encoding

Topological Encoding

Static Topological Encoding: we encode the relative distance between joints on the skeletal graph &g, using

measures like Shortest Path Distance (SPD) or level structure distance.
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Dynamic Topological Encoding: we adopt the differentiable vectorization®" : {92V, SZ(Z), e 92} — RI7xd op
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the barcodes.and project the obtained representation to GCN hidden layers’ feature space through a mapping

£, : RI7xd"  RI7IXd at each layer:
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Efficient Multi-Relational Modeling

We propose BlockGC, which efficiently models high-level semantics, reducing computation and parameters while
outperforming previous methods. The feature dimension is divided into K groups, with spatial aggregation and
feature projection applied in parallel within each group. The formula is as follows:
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RESULTS

Performance vs. Model Size
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Our BlockGCN improves over previous methods
w.r.t. both performance and efficiency.

Visualization of barcodes
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Barcodes of "brush hair" (top) and "shake hands" (bottom).



