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Federated Learning:

Federated learning is an emerging learning paradigm where multiple clients collaboratively train a
machine learning model in a privacy-preserving manner. Personalized federated learning extends
this paradigm to overcome heterogeneity across clients by learning personalized models.
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The main issues of current personalized federated learning:

® Due to the large number of parameters in
models, training local models from scratch
will consume a significant amount of

time. These limitations often restrict the
® There will be substantial communication mm) yse of complex model architectures,

costs incurred between clients and leading to reduced feature capacity.

servers when sharing and updating model

parameters.

® Overfitting may occur when training
large-scale models with limited client data.

We need pre-trained models and Prompt Learning — Federated Prompt Learning \\'?:)
Smaller trained parameters v Fast training speed v Lower communication costs v



Prompt Learning
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Fig. 2 Overview of Context Optimization (CoOp). The main idea is to model a prompt’s context using a set of learnable
vectors, which can be optimized through minimizing the classification loss. Two designs are proposed: one is unified context,

which shares the same context vectors with all classes: and the other is class-specific context, which learns for each class a
specific set of context vectors.

[1] Zhou K, Yang J, Loy C C, et al. Learning to prompt for vision-language models[J]. International Journal of Computer Vision, 2022, 130(9): 2337-2348.



Global Prompt and Local Prompt

Data heterogeneity

Client 1 Client i Client N

Directly calculate the similarity between two text features and image feature:
< X similar to computing the mean of text features and image feature
X make the two prompts close to the same point, leading to learn similar features



Optimal Transport (OT)

OT is a promising optimization problem to seek an efficient solution for transporting
one distribution to another.
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Employ Optimal Transport (OT) to align two text features and image feature:
G v compel two prompts to learn distinct information due to the constraints of OT
@ v more fine-grained cross-modal matching



Unbalanced Optimal Transport
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Federated Prompts Cooperation via Optimal Transport (FedOTP)
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Figure 1. Overview of our FedOTP. On the left, clients transmit global prompts to the server for aggregation while retaining local prompts
locally. The right shows the workflow of Global-Local prompt cooperation mechanism, which employs unbalanced Optimal Transport to
align visual feature maps with each prompt.



Federated Prompts Cooperation via Optimal Transport (FedOTP)

Matching scores:

Cosine similarity Optimal transport plan
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Formulation:
Traditional Optimal transport Unbalanced Optimal transport
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J for fast optimization
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entropic regularization term




Comparison with state-of-the-arts

Table 1. The results of our FedOTP and the benchmark methods on the Pathological Non-IID setting with non-overlapping over 10 clients.

Methods Food101 DTD Caltech101  Flowers102  OxfordPets
Local Training

Zero-Shot CLIP [55] 75.27+£0.05 40.21+0.12 85.14+0.24 62.17£0.12 84.47+0.10
CoOp [73] 82.54+2.42 82.69+0.63 90.41+0.44 88.23+0.76 94.52+1.30
Prompt-based Federated Learning

PromptFL [26] 74.81+£0.64 50.46+0.54 87.90+0.54 73.68+1.58 88.17+1.18
PromptFL+FT [23] 77.16x1.56 53.74+1.36 89.70+0.25 72.31£091 91.23+£0.50
PromptFL+FedProx [38] 73.96x0.75 50.89+0.71 87.80+1.10 74.14+0.65 87.25%+1.48
PromptFL+FedPer [1] 71.29+1.87 50.23+0.82 86.72+1.45 72.11£1.35 89.50+1.62
PromptFL+FedAMP [30] 74.48+1.71 47.16£0.92 87.31x1.60 69.10+£0.13 80.21+0.44
pFedPrompt [25] 02.26+1.34 77.14+£0.09 96.54+1.31 86.46+£0.15 91.84+0.41
FedOTP (Ours) 92.73+£0.15 87.67+0.70 97.02+0.36 96.23+0.44 98.82+0.11




Comparison with state-of-the-arts
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Figure A3. Accuracy curves and convergence behavior of FedOTP and other baselines on four datasets over 10 clients.




Ablation Study

Table AS. Quantitative comparisons on CIFAR-100 dataset with different «v of the Dirichlet setting.

Dataset CIFAR-100

#Ha 0.1 0.3 0.5 1 ) 10
Local Training

Zero-Shot CLIP [55] 65.22+0.32 64.92+0.53 65.78+0.41 63.93+0.16 64.01+£0.27 65.07£0.35
CoOp [73] 62.01£0.29 74.83+045 51.7240.42 47.03£0.37 41.03+£0.23 41.37£0.19
Prompt-based Federated Learning

PromptFL [26] 72.45+£0.64 73.67+£0.56 74.37+0.18 73.95+0.14 74.68+0.05 74.43+0.08
PromptFL+FedProx [38] 72.57£0.54 71.11£091 74.45+£0.19 74.19£0.06 74.23+£0.09 74.53+0.07
FedOTP (Similarity Averaging) | 78.68+0.17 75.70+£0.27 75.28+0.12 74.88+0.16 74.48+0.05 74.31+0.39
FedOTP (Classical OT) 79.93+0.19 77.86+£0.09 75.76+0.12 75.38+0.08 75.01+£0.05 74.73+0.05
FedOTP (Unbalanced OT) 80.56+0.12 78.03+0.08 76.75+0.10 76.17+0.13 75.75+0.03 75.52+0.06




Heatmaps of similarity between text features and image feature maps
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Heatmaps of transport plans related to global and local prompts
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Conclusion

« We have proposed to use optimal transport to promote cooperation between
global and local prompts for federated learning, namely FedOTP.

v Fast convergence and lower communication cost

v Capture consensus across clients and client specific traits at the same time
v' Focus on the main object of the image

v" More robust due to optimal transport




