
DMR: Decomposed Multi-Modality 
Representations for Frames and Events 

Fusion in Visual Reinforcement Learning

1School of Intelligent Systems Engineering, Shenzhen Campus of Sun Yat-sen University
2Peng Cheng Laboratory 

3School of Electronic and Computer Engineering, Shenzhen Graduate School, Peking University
4Academy of Military Sciences 5School of Computer Science, Peking University

(* corresponding authors)

Haoran Xu1,2, Peixi Peng2,3*, Guang Tan1*, Yuan Li4, Xinhai Xu4, Yonghong Tian2,3,5



Quick Preview

• We explore visual reinforcement learning (RL) using two complementary visual 
modalities: frame-based RGB camera and event-based Dynamic Vision Sensor (DVS). 

• Existing multi-modality visual RL methods often encounter challenges in effectively 
extracting task-relevant information from multiple modalities while suppressing the 
increased noise, only using indirect reward signals instead of pixel-level supervision. 

• To tackle this, we propose a Decomposed Multi-Modality Representation (DMR) 
framework for visual RL. It explicitly decomposes the inputs into three distinct 
components: combined task-relevant features (co-features), RGB-specific noise, and 
DVS-specific noise. 

• Extensive experiments demonstrate that, by explicitly separating the different types of 
information, our approach achieves substantially improved policy performance 
compared to state-of-the-art approaches.



Problem
(i) RGB Frame: insufficient ambient light 
causes RGB underexposure, leading to the 
overlooking of the front pedestrian and 
resulting in a forward policy aligned with 
the lane direction that could cause collisions.

(ii) DVS Events: the lack of texture in DVS 
causes the person and the background to 
blend, leading to a left-turn policy to avoid 
the highlighted area on the right.

The integration of frame- and event-based cameras has been explored for tasks like object detection 
and depth estimation. However, in vision-based RL, where entire observations are mapped to 
decisions only using temporal-difference (TD) loss, without pixel-level or instance-level supervision, 
simply aggregating frames and events can result in increased noise and task-irrelevant information. 
This phenomenon results in noise injection in the latent state space and leads to reduced RL 
performance.

(i) 

(ii) 



General solution
( i i i )  D e c o m p o s e d  M u l t i - m o d a l i t y 
Representations (DMR): can fully take 
advantage of RGB and DVS to extract task-
relevant information and eliminate task-
irrelevant and noisy information through 
jo int  TD  and  DM R  learn ing ,  thereby 
obtaining an optimal evasion policy. (i) 

We categorize the information from frames and events into three distinct types:

1) Combined task-relevant feature (referred to as co-feature);

2) RGB-specific noise and task-irrelevant feature, or simply RGB noise;

3) DVS-specific noise and task-irrelevant feature, or DVS noise.

The co-features represent the full information from both modalities that is essential for the RL task, 
while the noise represents unwanted information that may negatively impact the RL process.

Combining frames and events helps to extract important regions, including the pedestrian and road 
edges (as shown in the above figure). These regions are difficult to identify precisely using either 
modality alone. It is notable that these three parts are all latent and only the rewards collected by 
interacting with environments are available as external guidance during learning, which is consistent 
with the standard RL pipeline.



Methodology

• We first process asynchronous DVS events. It is a common practice to convert events within a fixed-
length temporal window into a fixed-size tensor representation, referred to as a voxel grid. To 
synchronize events with the low sampling rate of RGB frames, we partition the incoming events 
within the fixed time interval of RGB frames. The events occurring between the pair-wise frames are 
discretized into a spatio-tempral voxel grid. Each element in the voxel grid has three dimensions, 
two-dimensional location (��, ��), and temporal dimension (��). Formally:



Methodology

Decomposition idea: 

• Let ��
�  denote the representation for the original observation ��

�  of modality � ∈ {rgb, dvs}.

• The representations ��
�  may differ significantly for the two modalities even when they yield similar 

policies, because of the different working principles of RGB and DVS cameras.

• We decompose ��
�  into co-features ��

c and modality-specific noises ℎ�
�  as



Methodology

To achieve this, DMR comprises three branches:

• The upper and lower branches take RGB frames and DVS events as inputs, respectively. The data 
then pass through their respective encoders, denoted as           and          , to generate modality-
specific noise (         ,         ). 

• The intermediate branch takes the concatenation of RGB and DVS as input. Its output, co-features 
��
�, are generated by the intermediate encoder parameterized as        .



Methodology

To ensure the completeness of information, we employ reconstruction decoders, denoted as         , to 
ensure that the respective original observations        can be recovered:

where              and       is the set of sample indices in a training batch that are from different time steps 
in different MDPs.



Methodology

While ensuring the completeness of ��
� , we utilize the task-relevant predictive heads to guide the 

extraction of the co-features ��
�. Here, we incorporate the tractable reward and state head from 

DeepMDP into the predictive head. 

where          and            are state and reward predictive heads, respectively. These auxiliary models share 
the same structure except that the output of           is a one-dimension scalar.



Methodology

Finally, the noise should exhibit clear dissimilarity from the co-features. In other words, there should 
be minimal overlap between ℎ�

�  and ��
�. To achieve this distinction, we design the following contrastive 

constraint:

where ��
c and ℎ�

�  indicate the moving-averaged target values of ��
� and ℎ�

� , respectively, and the function 
�(�, �) = exp( �, � /�)measures the similarity between � and � using the dot product  �, �  and the 
temperature parameter �.



Methodology

With the full sensory input decomposed, we can proceed to develop policies for the downstream task 
using the extracted co-features. These co-features are isolated from irrelevant information, enabling 
them to more effectively support the objectives of downstream control.
In this process, we estimate the action-value and state-value by utilizing the Bellman equation and the 
co-features generated from DMR. Then, we can derive the policy �∅:



Methodology
The full training pipeline of DMR is provided in Algorithm 1:

Representation Learning

Reinforcement Learning

Environment Interaction



Experimental analysis
We adopt the widely-used Carla simulator to establish our new Carla benchmark. Carla supports 
a rich set of scenarios with varying lighting and weather conditions. 

Our Carla benchmark features two traffic scenarios: 
(i) the HighBeam (HB) scenario, where an ego-vehicle experiences varying lighting conditions 
while encountering a cyclist, and 
(ii) the JayWalk (JW) scenario, where the ego-vehicle encounters both stationary and moving 
pedestrian obstacles intermittently. 

Moreover, the benchmark includes extreme weather conditions (Midnight and Hardrain) that 
can cause RGB camera failure or excessive noise with DVS cameras.

Metrics: All experiments are trained across 3 
random seeds and 20 evaluation rollouts per seed, 
yielding mean and standard deviation of the 
metrics of episode reward and distance.

DVS details: For multi-modality observations, we 
focus on the fusion of RGB frames (RGB for short) 
and DVS voxel  gr ids  (DVS) .  In  addit ion,  we 
introduce the frame-based DVS events, termed 
DVS-F ,  as a type of observation to show the 
effectiveness of DVS voxelization. 



Experimental analysis

• The learned policies of SOTA multi-modality methods often fail to match the performance achieved by single-
modality methods. 

• This could be attributed to the common adoption of multi-scale and attention mechanisms in current state-
of-the-art multi-modality methods. These approaches often mix task-relevant information with 
accumulated noise, complicating the extraction of information crucial for downstream tasks.

• In contrast, our method offers a solution by explicitly eliminating noise and providing refined co-features for 
the RL. Compared to alternative multi-modality RL methods, our approach obviates the need for constructing 
intricate and resource-intensive fusion networks, while still attaining advantages in sample efficiency and 
learning performance.



Experimental analysis

• M2  s l ight ly  improves on M1 in terms of 
distance while having little effect on reward. 
This is possibly because of the uncertainty in 
replay buffer sampling during RL training.

• With the introduction of three branches and 
contrast ive constraints  (M3 ) ,  there is  a 
significant improvement in both distance and 
reward.

• with the incorporation of the reconstruction 
decoder (M4), reward and distance further 
improve,  indicating the necessity of the 
information completeness constraint. 

• the CAMs for single-modality models primarily 
highlight the front road and the adjacent 
buildings, activating an unnecessarily broad 
space.

• The simple multi-modality model without using 
decomposition and contrastive constraints 
generates a more focused area,  but st i l l 
contains task-irrelevant regions.

• Our DMR effectively captures pertinent areas 
for RL while eliminating irrelevant regions. 



Experimental analysis

• In the extremely low-light condition (JW-Midnight), 
DVS can capture the front pedestrian while RGB 
camera suffers from exposure failure. It can be 
seen that RGB noise highlights the high beam 
region on the road, while DVS noise is activated 
across a broader region, with the highest activation 
on the building. We can also see that the co-
features attentively grasp the pedestrian and the 
right roadside simultaneously.

• In the rapidly-changing illumination condition (HB-
Hardrain), DVS generates excessive event noise, 
while RGB can capture rich texture information. 
Notably, RGB noise mainly highlights brighter 
regions such as the front road and nearby vehicles 
and buildings, while DVS noise is prominent 
around puddles and splashing water. We observe 
that the co-features distinctly focus on the front 
cyclist, left vehicle, and right building, which are 
crucial for driving decision-making.



Experimental analysis

• We present the similarity matrix between co-features and the modality-specific noises from RGB 
frames and DVS events, obtained from a training batch of 32 samples at the 100K'th training step.

• Each row in the similarity matrix depicts similarities between the co-feature and itself, RGB noise, and 
DVS noise. 

• We can see that the co-features exhibit strong coherence among themselves, while their similarity 
with the noises is remarkably low, illustrating a clear contrast. 



Conclusion

• This paper explores a new decomposition perspective to address the multi-modality 
visual RL problem. We propose a novel three-branch multi-modality fusion framework, 
called DMR, designed for highly-complementary frame- and event-based visual 
modalities. DMR can explicitly extract task-relevant features from both modalities while 
mitigating the impact of irrelevant information and noise from each modality. 
Experimental results demonstrate the efficacy and superiority of DMR in policy 
performance.

• We will focus on exploring the generalization of modalities and stability in more diverse 
and realistic scenarios in a sim2real fashion.


