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Motivation

* Audio-only RIR estimation techniques are capable of estimating early
components and are not effective in estimating late components.

* Visual-only RIR estimation demonstrates feasibility of predicting late
components from the RGB image of the environment, however these approaches
are not effective in estimating early components.

* Considering the limitation of prior works, we propose AV-RIR, a novel multi-modal
multi-task learning approach for RIR estimation.
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AV-RIR

AV-RIR employs a neural codec-based multi-modal architecture that inputs
audio and visual cues and proposed novel Geo-Mat feature that captures room
geometry and material information.

We also propose CRIP to improve the late reverberation of estimated RIR using
retrieval and observe that CRIP improves late reverberation by 86%.

AV-RIR solves an auxiliary speech dereverberation task for learning RIR
estimation. Through this, AV-RIR essentially learns to separate anechoic speech
and RIR.
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AV-RIR : Geo-Mat Feature
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Geo-Mat Feature
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AV-RIR : Training
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AV-RIR : Late Component
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Contrastive RIR-Image Pretraining (CRIP)
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Qualitative Results

Novel View Acoustic Synthesis : In the novel view acoustic synthesis task, given the
audio-visual input from the source and target viewpoint, we modify the reverberant speech
from the source viewpoint to sound as if it is recorded from the target viewpoint.

Visual-Acoustic Matching : In the visual-acoustic matching task, we resynthesize the
speech from the source environment to match the target environment.
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Novel View Acoustic Synthesis

We estimate the Enhanced Speech from source viewpoint Audio-Visual input.
The RIR of the target view is estimated from target viewpoint Audio-Visual Input.

The target RIR is convolved with source clean speech to synthesize speech for target
viewpoint.
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Novel View Acoustic Synthesis - Source View
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Novel View Acoustic Synthesis - Source View
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Novel View Acoustic Synthesis - Target View
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Novel View Acoustic Synthesis - Target View
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Visual Acoustic Matching

In Visual Acoustic Matching Tasks, the reverberation effects of input clip from source
environments is matched to the target environment conditions.

From our AV-RIR, we estimate the Enhanced Speech from source environment.
We estimate the RIR of target environment from Audio-Visual Input.

The target environment RIR is convolved with source environment clean speech to
synthesize speech for target environment.
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Visual Acoustic Matching - Source Environment
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Visual Acoustic Matching - Source Environment
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Visual Acoustic Matching - Target Environment
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Visual Acoustic Matching - Target Environment
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