

IPoD: Implicit Field Learning with Point Diffusion for Generalizable 3D Object Reconstruction from Single RGB-D Images

CVPR2024 (Highlight)

Yushuang Wu, Luyue Shi, Junhao Cai, Weihao Yuan, Lingteng Qiu Zilong Dong, Liefeng Bo, Shuguang Cui, Xiaoguang Han

• Task: 3D object reconstruction from single-view RGB-D images

• Background

Implicit Field Learning: MCC, NU-MCC

2D Multi-view Diffusion: ImageDream, One2345

3D Point Diffusion: PC², PVD

• Motivation:

Implicit Field Learning

Classic: random query sampling

V

Ours: adaptive query sampling

• **IPoD**: <u>Implicit Field Learning with Point Diffusion</u>

D ⇔I: Queries in implicit learning are view as a whole point cloud that can be adapted to the target shape via point denoising learning.

I ▷ D: Implicit predictions at each point serve as selfcondition to provide pointwise guidance for point diffusion-denoising learning.

The implicit field learning and diffusion-denoising learning in IPoD form a **cooperative** system!

Methodology

• Preliminary

Implicit field learning: $f_{\theta}(Q \mid P, I) \rightarrow \nu$ $\mathcal{L}_{imp} = \left\| f_{\theta}(Q \mid P, I) - \nu \right\|_{1}$

Diffusion learning:

$$g_{\theta}(X_t, t \mid P, I) \to \epsilon$$
$$\mathcal{L}_{\text{diff}} = \left\| g_{\theta}(X_t, t \mid P, I) - \epsilon \right\|_2$$

Ours:

 $h_{\theta}(X_t, t \mid P, I) \to (\epsilon, \nu)$ $\mathcal{L}_{\text{uni}} = \left\| \nu' - \nu \right\|_1 + \lambda \left\| \epsilon' - \epsilon \right\|_2$

Input: image and seen point cloud

Supervision: GT pc, implicit value, and noise

Methodology

• Pipeline

Methodology

• Implementation

Transformer-based implementation:

PVCNN-based implementation:

• Denoising process visualization

• Quantitative results on CO3D-v2 (10 held-out categories)

Method	Backbone	Acc↓	Comp↓	CD↓	Prec↑	Recall↑	F1↑
PC^2	PVCNN	0.342	0.214	0.556	24.2	56.2	33.0
PC ² -depth	PVCNN	0.209	0.103	0.312	61.7	87.6	70.7
MCC	Transformer	0.172	0.144	0.316	68.9	72.7	69.8
NU-MCC	Transformer	0.121	0.146	0.266	79.2	84.0	80.9
Ours1	PVCNN	0.163	0.089	0.252	69.0	89.7	76.2
Ours2	Transformer	0.104	0.087	0.190	85.1	90.1	87.2

• Qualitative results on CO3D-v2 (held-out categories)

• Generalization results on MVImgNet

• Qualitative results on CO3D-v2 (held-in categories)

End

• Thanks!

