Learn from View Correlation: An Anchor Enhancement Strategy for Multi-view Clustering

Suyuan Liu, Ke Liang, Zhibin Dong, Siwei Wang, Xihong Yang, Sihang Zhou, En Zhu, Xinwang Liu*

{suyuanliu,xinwangliu}@nudt.edu.cn

https://tracesource.github.io/

May 27, 2024

1/21

- 1 Motivation
- 2 Related Work
- 3 Method
- **4** Experimental Results
- 5 Thanks

3

イロト イポト イヨト イヨト

1 Motivation

- 2 Related Work
- 3 Method
- **4** Experimental Results
- **5** Thanks

3

<ロト < 四ト < 三ト < 三ト

Overview

Observation:

- The performances of existing anchor-based methods are significantly affected by the quality of the anchors.
- 2 The anchors generated by previous works solely rely on single-view information, ignoring the correlation among different views.

Contribution:

- We propose AEVC, a plug-and-play anchor enhancement strategy for MVC based on view correlation.
- 2 By learning from the view correlation, AEVC incorporates the anchor distribution information from neighboring views into the process of anchor enhancement.
- S Extensive experiments verify the effectiveness and generalization of the proposed AEVC strategy when integrated with typical anchor-based MVC methods.

< ロ ト < 同 ト < 三 ト < 三 ト - 三 .

Anchor Construction in Multi-View Scenarios

The results of downstream tasks are affected by the quality of the initially fixed anchors.

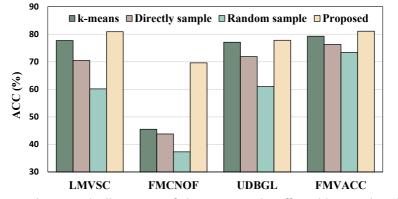


Figure 1: An example illustration of clustering results affected by initial anchors.

Anchor Construction in Multi-View Scenarios

Anchor updating is a strategy to mitigate the impact of initialization.

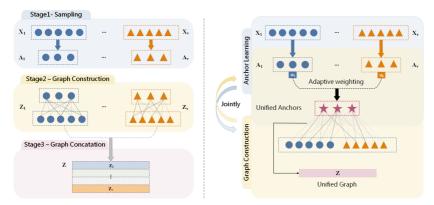


Figure 2: Fixed anchors methods v.s. Updated anchors methods.¹

 $^{^{1}}$ Mengjing Sun et al. "Scalable multi-view subspace clustering with unified anchors". In: Proceedings of the 29th ACM International Conference on Multimedia. 2021, pp.43528–3536. $\rightarrow \Xi \rightarrow \Xi \rightarrow \Im$

Anchor Construction in Multi-View Scenarios

Heuristic sampling strategies for single-view scenarios are not suitable for anchor construction in multi-view scenarios:

- Ignoring inter-view relationships and constructing anchors independently leads to inconsistencies in downstream fusion tasks.
- Anchor updating strategy integrates multi-view information into the anchors through alternating optimization between views, yet optimization is inevitably influenced by initialization.

These inspire us to enhance the anchors with view correlations.

Motivation

2 Related Work

- 3 Method
- **4** Experimental Results
- **5** Thanks

3

<ロト < 四ト < 三ト < 三ト

Anchor-based Multi-View Clustering

Anchor-based methods are widely regarded as an effective strategy for handling large-scale datasets. The main idea of the anchor-based methods is to select or sample a small number of representative anchors and explore their relationships with the original samples.²³⁴

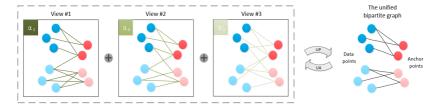


Figure 3: Framework of the anchor-based multi-view clustering method.

S. Liu et. al (NUDT)

 $^{^2 \}rm Yeqing$ Li et al. "Large-scale multi-view spectral clustering via bipartite graph". In: Twenty-Ninth AAAI Conference on Artificial Intelligence. 2015.

³Zhao Kang et al. "Large-scale multi-view subspace clustering in linear time". In: Proceedings of the AAAI Conference on Artificial Intelligence. Vol. 34. 04. 2020, pp. 4412–4419.

Anchor-based Multi-View Clustering

Anchor-based MVC methods typically consist of three procedures, including:

1. Anchor generation:

Independently select fixed anchors to represent all samples in each view, such as using k-means or random sampling.

2. Anchor graph construction:

$$\min_{\mathbf{Z}_i} \|\mathbf{X}_i - \mathbf{A}_i \mathbf{Z}_i\|_{\mathbf{F}}^2 + \Omega(\mathbf{Z}_i), \text{s.t. } \mathbf{Z}_i \ge 0, \mathbf{Z}_i^\top \mathbf{1} = \mathbf{1}.$$
(1)

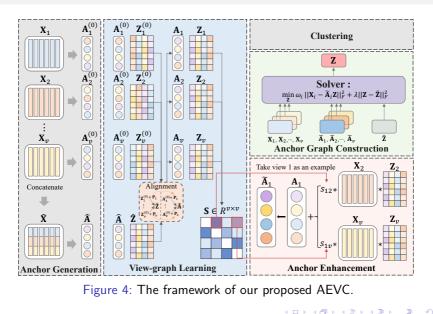
3. Multi-view fusion:

$$\min_{\boldsymbol{\alpha}^{\top} \mathbf{1} = \mathbf{1}, \boldsymbol{\alpha} \ge \mathbf{0}, \mathbf{P}} \left\| \sum_{i=1}^{\nu} \alpha_i \mathbf{Z}_i - \mathbf{P} \right\|_{\mathbf{F}}^2, \text{s.t. } \mathbf{P}^{\top} \mathbf{1} = \mathbf{1}, \boldsymbol{\alpha} \ge \mathbf{0}.$$
(2)

1 Motivation

2 Related Work

3 Method


- **4** Experimental Results
- **5** Thanks

3

<ロト < 四ト < 三ト < 三ト

Method

Anchor Enhancement Strategy with View Correlation

View-graph Learning

Firstly, align the anchor graphs and anchors with a common anchor graph.

$$\min_{\mathbf{P}_{i}} \left\| \hat{\mathbf{Z}} - \mathbf{P}_{i} \mathbf{Z}_{i}^{(0)} \right\|_{\mathbf{F}}^{2},$$
s.t. $\mathbf{P}_{i} \mathbf{1} = \mathbf{1}, \mathbf{P}_{i}^{\top} \mathbf{1} = \mathbf{1}, \mathbf{P}_{i} \in \{0, 1\}^{m \times m}.$
(3)

Then, compute the inter-view correlations based on the anchor graphs.

$$\begin{cases} \mathbf{s}_{ij} = \frac{1}{\|\mathbf{Z}_i - \mathbf{Z}_j\|_{\mathsf{F}}^2}, & i \neq j, \\ \mathbf{s}_{ij} = 0, & i = j. \end{cases}$$
(4)

3

< □ > < 同 > < 回 > < 回 > < 回 >

Anchor Enhancement Strategy

Due to the varying dimensions of anchors across views, we enhance the anchors of the current view with the anchor graph of neighboring views.

$$\tilde{\mathbf{A}}_{i} = \frac{1}{\mu} (\mathbf{A}_{i} + \gamma \sum_{\mathbf{X}_{j} \in \Omega_{\zeta}(\mathbf{X}_{i})} \hat{s}_{ij} \mathbf{X}_{i} \mathbf{Z}_{j}^{\top}),$$
(5)

where $\mu = 1 + \gamma \sum_{\mathbf{X}_j \in \Omega_{\zeta}(\mathbf{X}_i)} \hat{s}_{ij}$.

Anchor Graph Construction

Construct a unified anchor graph with the enhanced anchors from each view.

$$\min_{\mathbf{Z}} \omega_i \left\| \mathbf{X}_i - \tilde{\mathbf{A}}_i \mathbf{Z} \right\|_{\mathbf{F}}^2 + \lambda \left\| \mathbf{Z} - \hat{\mathbf{Z}} \right\|_{\mathbf{F}}^2,$$
s.t. $\mathbf{Z} \ge 0, \mathbf{Z}^\top \mathbf{1} = \mathbf{1},$
(6)

where $\omega_i = \sum_{j=1}^{v} s_{ij}$ is the contribution weight computed with the view-graph.

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ ▲圖 - のへの

Two Property of Enhanced Anchors

Property 1. The disparity among the anchor graphs on each view is reduced after anchor enhancement. Mathematically,

$$\left\|\tilde{\mathsf{Z}}_{1}-\tilde{\mathsf{Z}}_{2}\right\|_{\mathsf{F}} < \left\|\mathsf{Z}_{1}-\mathsf{Z}_{2}\right\|_{\mathsf{F}}. \tag{7}$$

Property 2. Assuming there exists a value $\beta \in (0, 1)$ such that $\mathbf{Z} = \beta \mathbf{Z}_1 + (1 - \beta)\mathbf{Z}_2$ is the optimal consistent anchor graph among all views, the enhanced anchor graph is closer to the optimal version after enhancement than before for all $\alpha \in (2\beta - 1, 1) \cap (0, 1)$. Mathematically,

$$\left\|\tilde{\mathsf{Z}}_{1}-\mathsf{Z}\right\|_{\mathsf{F}}<\left\|\mathsf{Z}_{1}-\mathsf{Z}\right\|_{\mathsf{F}}.$$
(8)

Motivation

- 2 Related Work
- 3 Method
- **4** Experimental Results

5 Thanks

3

・ロト ・四ト ・ヨト ・ヨト

Performance on Downstream Tasks

Datasets	LMVSC	SMVSC	FMCNOF	FPMVS-CAG	UDBGL	FastMICE	FDAGF	FMVACC	Proposed			
ACC												
Dermatology	79.02±0.07	78.64±0.05	62.01±0.00	82.96±0.07	84.08±0.00	87.15±0.00	84.41±7.90	84.39±4.34	93.20±4.50			
ForestTypes	77.68±0.04	72.82±0.01	45.51±0.00	72.22±0.05	77.06±0.00	77.06±0.00	76.40±7.13	79.29±0.23	82.53±0.09			
BDGP	49.52±0.02	37.22±0.02	31.08±0.00	32.62±0.01	39.28±0.00	49.00±0.00	47.30±3.16	59.51±4.00	60.65±0.62			
Reuters	27.19±0.01	24.41±0.01	19.25±0.00	17.33±0.00	22.32±0.00	26.00±0.00	25.04±0.50	27.22±0.24	29.91±0.02			
Hdigit	86.87±0.08	65.99±0.03	32.84±0.00	64.22±0.05	31.39±0.00	85.13±0.00	77.69±7.83	86.55 ± 4.08	88.01±2.97			
VGGFace	6.09±0.00	7.21±0.00	3.47±0.00	6.02±0.00	5.39±0.00	5.26±0.00	6.50±0.33	6.68±0.16	8.35±0.07			
CIFAR100	8.92±0.00	8.48±0.00	4.40 ± 0.00	7.46±0.00	7.83±0.00	9.81±0.00	7.47±0.13	7.04±0.12	10.74±0.08			

Figure 5: Clustering performance comparison of existing anchor-based methods.

Methods	Dermatology	ForestTypes	BDGP	Reuters	Hdigit	VGGFace	CIFAR100					
Fixed Anchors Methods												
FMCNOF	62.01±0.00	45.51±0.00	31.08±0.00	19.25±0.00	32.84±0.00	3.47±0.00	4.40±0.00					
FMCNOF-AE	73.18±0.00	69.60±0.00	37.64±0.00	22.79±0.00	34.31±0.00	3.21 ± 0.00	5.05±0.00					
LMVSC	79.02±0.07	77.68±0.04	49.52±0.02	27.19±0.01	86.87±0.08	6.09 ± 0.00	8.92±0.00					
LMVSC-AE	88.23±7.80	80.90±5.49	52.13±0.34	28.84±0.67	85.74±5.72	6.83±0.16	8.81±0.16					
Updated Anchors Methods												
UDBGL	84.08±0.00	77.06±0.00	39.28±0.00	22.32±0.00	31.39±0.00	5.39 ± 0.00	7.83±0.00					
UDBGL-AE	81.01±0.00	77.82±0.00	46.92±0.00	28.53±0.00	44.60±0.00	5.65±0.00	8.57±0.00					
FMVACC	84.39±4.34	79.29±0.23	59.51±4.00	27.22±0.24	86.55±4.08	6.68±0.16	7.04±0.12					
FMVACC-AE	88.41±3.13	81.08±0.23	59.36±3.03	33.12±2.49	88.42±2.93	7.13±0.17	7.28±0.15					

Figure 6: Comparison between anchor-based MVC w./w.o. our AEVC strategy.

A B A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Validation of Anchor Enhancement

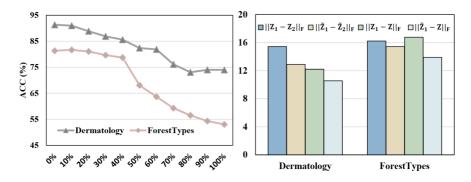


Figure 7: Left: As the proportion of randomly generated anchors increases, the corresponding clustering performance decreases monotonically. Right: After anchor enhancement, the differences in anchor graphs between different views are reduced, and the enhanced anchor graph is closer to the optimal consensus anchor graph.

1 Motivation

- 2 Related Work
- 3 Method
- **4** Experimental Results

5 Thanks

3

<ロト < 四ト < 三ト < 三ト

Thanks for Your Listening!

https://tracesource.github.io/