

Dynamic Adapter Meets Prompt Tuning:

Parameter-Efficient Transfer Learning for Point Cloud Analysis

Xin Zhou^{1*}, Dingkang Liang^{1*}, Wei Xu¹, Xingkui Zhu¹, Yihan Xu¹, Zhikang Zou², Xiang Bai¹

¹Huazhong University of Science & Technology, ²Baidu Inc.

Hightlights

- Existing Adapter tuning utilizes additional residual blocks with manual scale. Prompt tuning usually introduces extra random initialized prompts into the input space.
- Our DAPT leverages a simple Dynamic Adapter that generates a dynamic scale for each token and seamlessly integrates it with Prompt tuning.

Transformer layer	90 RECon-DAPT (Ours)	
$S_{m} \qquad Token Token \cdots Token \uparrow \\ \downarrow \qquad \qquad \uparrow \qquad \qquad \qquad \uparrow \qquad \qquad \qquad \qquad \uparrow \qquad \qquad$	$\begin{array}{c} & & & \\ & &$	ReCon
Adapter + #Transformer layer	B3 BF1 Point-BERT	
Token Token ···· Token Prompt Token Token ··· Token	Token Token 82 0 15 30 Tunable parameters (M)	45

♦ Tunable parameters

🗱: Frozen parameters

 S_m : Manual scale

- Pre-training on 3D datasets is gaining significant interest. Several works utilize self-supervised methods and achieve excellent performance.
- Two mainstream methods:
 - Mask modeling
 - Contrastive learning

- Finetuning all parameters for pre-trained model may lead to
 - Catastrophic forgetting and break the rich prior
 - Fine-tuning for each point cloud analysis dataset requires a separate weights copy, and the storage space overhead may becomes a burden as the number of datasets increases
 - The computational cost requirements escalate dramatically, especially for larger batch sizes, leading to a substantial increase in GPU memory usage, limiting its accessibility for researchers with weak hardware.

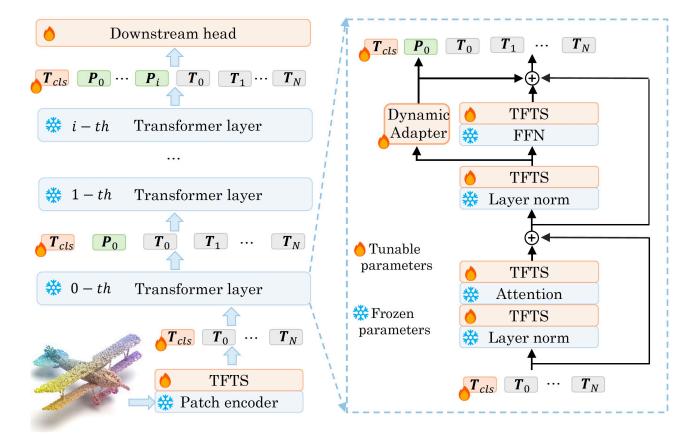
- Parameter-Efficient Transfer Learning fixes most of the parameters and adjusting only a selected few.
- Two mainstream methods:
 - Adapter tuning: often require manual scale setting as a crucial hyper-parameter, while the value remains constant during inference.
 - **Prompt tuning**: usually adds external random initialized prompts as extra inputs.

- Existing tuning strategies achieve promising results in NLP and 2D vision, they lack targeted design.
- Can not achieve satisfying results on hard point cloud datasets.

Tuning Strategy	#TP(M)	OBJ_BG	OBJ_ONLY	PB_T50_RS
Point-MAE	22.1	90.02	88.29	85.18
Linear probing	0.3	87.26(-2.76)	84.85(- 3.4 4)	75.99(-9.19)
+ Adapter	0.9	89.50(- 0.52)	88.64(+0.35)	83.93(-1.25)
+ VPT	0.4	87.26(- 2.76)	87.09(-1.20)	81.09(-4.09)

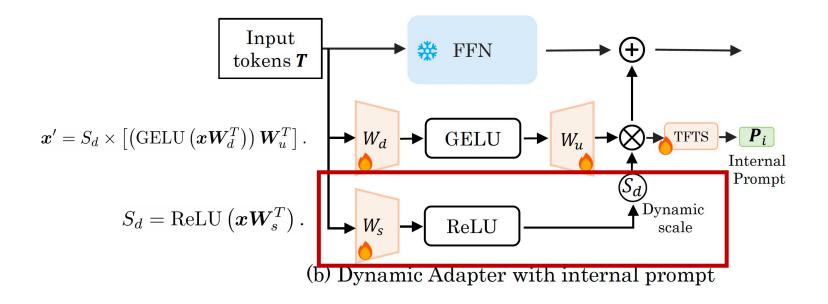
Overall

• During the fine-tuning, we fix the entire backbone, only fine-tuning the newly added parameters.



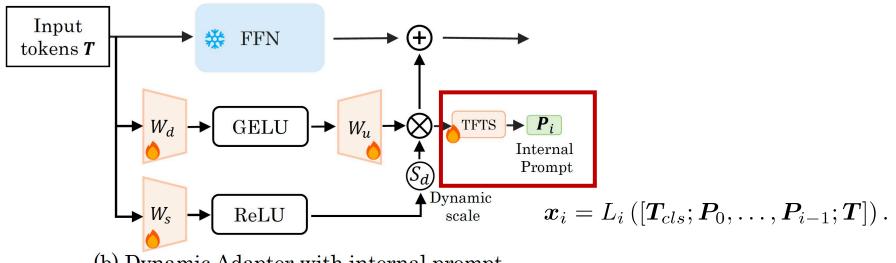
Method

- The Dynamic Adapter adopt a parallel MLP to generate dynamic scale S_d based on variant point cloud features.
- The ReLU to select the positive scale and set the rest as zero.



Method

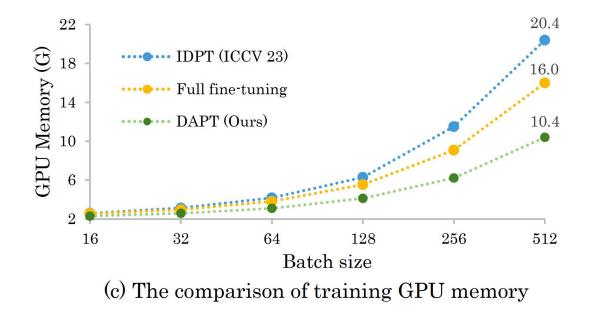
 We leverage the Dynamic Adapter to generate the prompt derived from the original model's internal output using the proposed Dynamic Adapter, called Internal Prompt tuning.



(b) Dynamic Adapter with internal prompt

Method

 DAPT can consistently reduce training memory as the batch size increases. With 512 batch size, our DAPT significantly reduces GPU memory usage by 35% and 49% compared to full fine-tuning and IDPT.



Experiments

 For the ScanObjectNN and ModelNet40, we achieve the best performance on most sub-sets.

Method	Reference	Tunable params. (M	$\mathbf{FI} \mathbf{OP}_{\mathbf{C}}(\mathbf{C})$	ScanObjectNN			ModelNet40	
Method	Kelefence	Tunable parallis. (W)	$\Gamma LOIS(\mathbf{O})$	OBJ_BG	OBJ_ONLY	PB_T50_RS	Points Num.	OA (%)
		Self-Supervised H	Representation	n Learning (I	Full fine-tunin	g)		
OcCo [47]	ICCV 21	22.1	4.8	84.85	85.54	78.79	1k	- / 92.1
Point-BERT [55]	CVPR 22	22.1	4.8	87.43	88.12	83.07	1k	- / 93.2
MaskPoint [28]	ECCV 22	22.1	-	89.70	89.30	84.60	1k	- / 93.8
Point-MAE [37]	ECCV 22	22.1	4.8	90.02	88.29	85.18	1k	- / 93.8
Point-M2AE [60]	NeurIPS 22	15.3	3.6	91.22	88.81	86.43	1k	- / 94.0
ACT [8]	ICLR 23	22.1	4.8	93.29	91.91	88.21	1k	- / 93.7
RECON [41]	ICML 23	43.6	5.3	94.15	93.12	89.73	1k	- / 93.9
		Self-Supervised Rep	presentation L	earning (Eff	ficient fine-tun	ing)		
Point-BERT [55] (baseline)	CVPR 22	22.1 (100%)	4.8	87.43	88.12	83.07	1k	92.7 / 93.2
+ IDPT [57]	ICCV 23	1.7 (7.69%)	7.2	88.12(+0.69)	88.30(+0.18)	83.69(+0.62)	1k	92.6(-0.1) / 93.4(+0.2)
+ DAPT (ours)	-	1.1 (4.97%)	5.0	91.05(+3.62)	89.67(+1.55)	85.43(+2.36)	1k	93.1(+0.4) / 93.6(+0.4)
Point-MAE [37] (baseline)	ECCV 22	22.1 (100%)	4.8	90.02	88.29	85.18	1k	93.2/93.8
+ IDPT [57]	ICCV 23	1.7 (7.69%)	7.2	91.22(+1.20)	90.02(+1.73)	84.94(-0.24)	1k	93.3(+0.1) / 94.4(+0.6)
+ DAPT (ours)	-	1.1 (4.97 %)	5.0	90.88 (+0.86)	90.19(+1.90)	85.08(-0.10)	1k	93.5(+0.3) / 94.0(+0.2)
RECON [41] (baseline ²)	ICML 23	22.1 (100%)	4.8	94.32	92.77	90.01	1k	92.5 / 93.0
+ IDPT* [57]	ICCV 23	1.7 (7.69%)	7.2	93.29(-1.03)	91.57(-1.20)	87.27(-2.74)	1k	93.4(+0.9) / 93.5(+0.5)
+ DAPT (ours)	-	1.1 (4.97%)	5.0	94.32(0.00)	92.43(-0.34)	89.38(-0.63)	1k	93.5(+1.0) / 94.1(+1.1)

Experiments

Few-shot learning on ModelNet40

• We evaluate few-shot and part segmentation performance of DAPT on the ModelNet40 and ShapeNetPart datasets, respectively.

Methods	Reference	5-way	10	-way	Metho	ods	Reference	#TP (M)	Cls. mIoU (%)	Inst. mIoU (%)
Wellous Reference	10-shot 20-sho	t 10-shot	20-shot		Self-Supervised Representation Learning (Full fine-tu					
with Self-Super	vised Represent	tation Learning (Fu	ll fine-tuning	g)	OcCo	[47]	ICCV 21	27.09	83.42	85.1
OcCo [47] Point-BERT [55] MaskPoint [28] Point-MAE [37] Point-M2AE [60]		94.0±3.6 95.9±2 94.6±3.1 96.3±2 95.0±3.7 97.2±1 96.3±2.5 97.8±1 96.8±1.8 98.3±1 96.8±2.3 98.0±1	$\begin{array}{c} 7 & 91.0 \pm 5.4 \\ 7 & 91.4 \pm 4.0 \\ 8 & 92.6 \pm 4.1 \\ 4 & 92.3 \pm 4.5 \end{array}$	4 92.7±5.1 0 93.4±3.5 1 95.0±3.0 5 95.0±3.0	Point	Point [28] -BERT [55] -MAE [37] [8] Self-Supervised Ra	ECCV 22 CVPR 22 ECCV 22 ICLR 23	27.09 27.06 27.06 27.06	84.60 84.11 84.19 84.66 <i>(Efficient fine-tu</i>	86.0 85.6 86.1 86.1 ming)
ACT [8] RECON [41] with Self-Supervis	ICLR 23 ICML 23 red Representat	96.8 ± 2.5 98.0 ± 1 97.3 ± 1.9 98.9 ± 3 tion Learning (Efficient	.9 93.3±3.9	$9.95.8 \pm 3.0$	+ IDF	-BERT [55] (baseline) PT* [57] PT (ours)	CVPR 22 ICCV 23	27.06 5.69 5.65	84.11 83.50 83.83	85.6 85.3 85.5
Point-BERT [55] (baselin + IDPT [57] + DAPT (ours)	e) CVPR 22 ICCV 23	94.6±3.1 96.3±2 96.0±1.7 97.2±2 95.8±2.1 97.3±1	.6 91.9 \pm 4.4	4 93.6±3.5	+ IDF	-MAE [37] (baseline) PT [57] PT (ours)	ECCV 22 ICCV 23	27.06 5.69 5.65	84.19 83.79 84.01	86.1 85.7 85.7
Point-MAE [37] (baselin + IDPT [57] + DAPT (ours)	e) ECCV 22 ICCV 23	96.3±2.5 97.8±1 97.3±2.1 97.9±1 96.8±1.8 98.0±1	192.8 ± 4.1	1 95.4± 2.9	+ IDF	DN [41] (baseline ²) PT* [57] PT (ours)	ICML 23 ICCV 23	27.06 5.69 5.65	84.52 83.66 83.87	86.1 85.7 85.7

Part segmentation on ShapeNetPart

Experiments

 Comparisons of parameter efficient transfer learning methods from NLP and 2D Vision on the hardest variant of ScanObjectNN.

Method	Reference	#TP (M)	PB_T50_RS
Point-MAE [28]	ECCV 22	22.1	85.18
Linear probing		0.3	75.99
+ Adapter [16]	ICML 19	$\begin{array}{c} 0.9 \\ 0.7 \\ 0.3 \\ 0.9 \\ 0.4 \\ 0.9 \\ 0.4 \end{array}$	83.93
+ Perfix tuning [25]	ACL 21		77.72
+ BitFit [56]	ACL 21		82.62
+ LoRA [17]	ICLR 22		81.74
+ VPT-Deep [18]	ECCV 22		81.09
+ AdaptFormer [4]	NeurIPS 22		83.45
+ SSF [26]	NeurIPS 22		82.58
+ IDPT [57]	ICCV 23	1.7	84.94
+ DAPT (ours)		1.1	85.08

Comparisons on ScanObjectNN PB-T50-RS

THANK YOU!

Xin Zhou^{1*}, Dingkang Liang^{1*}, Wei Xu¹, Xingkui Zhu¹, Yihan Xu¹, Zhikang Zou², Xiang Bai¹

¹Huazhong University of Science & Technology, ²Baidu Inc.

