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 Two types of explainable Al methods
* Post-hoc method
* Explainable the model after the training
* Inconsistent to prediction
* Inherent method

* Modelis designed with interpretability built into their structure
* Performance trade-offs between accuracy and interpretability
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* Providing low and mid-level explanations:
« A more comprehensive aspect to unveil the model
« Seamlessly integrated into various model (CNN-based)
Concept
MCPNet(Ours) | ProtoPNet[1,2,3] Bottleneck [4] TCAV [5] CRAFT [6]
Explanation Type Inherent Inherent Inherent Post-hoc Post-hoc

Explanation Scale

w/o Concept Labels

w/o Modifying Models

Multi-Level
v

v

Single-Level
v

X

Single-Level

X

X

Single-Level

X

v

Single-Level
v

v

[1] CHEN, Chaofan, et al. This looks like that: deep learning for interpretable image recognition.

[2] DONNELLY, Jon, et al. Deformable protopnet: An interpretable image classifier using deformable prototypes.

[3] NAUTA, Meike, et al. Pip-net: Patch-based intuitive prototypes for interpretable image classification.

[4] KOH, Pang Wei, et al. Concept bottleneck models. In: International conference on machine learning.

[5] KIM, Been, et al. Interpretability beyond feature attribution: Quantitative testing with concept activation vectors (tcav).
[6] FEL, Thomas, et al. Craft: Concept recursive activation factorization for explainability.
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An inherently hierarchical explanation method to unveil the model
* Providing multi-scale explanations

 Without compromising the performance

Seamlessly integrate with various backbone (CNN-based)
#A (from Layer 1) #B (from Layer 2)

Image MCP distribution
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* Proposed constraints
* Centered Kernel Alignment (CKA) loss
e C(Class-aware Concept Distribution (CCD) loss

Centered Kernel Alignment loss Class-aware Concept Distribution loss
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Proposed Method

* Centered Kernel Alignment (CKA) loss
* Disentangling segment semantics

Split Concept Segments Centered Kernel Alignment loss




Proposed Method

* Concept prototypes extraction
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* C(lass-aware Concept Distribution (CCD) loss
* (lassifying via Multi-level Concept Prototypes distributions (MCP distribution)

Concept Concept
Prototypes Segments

@ Conv.

(
I
I a |
I
I |
| — ﬁ | |:'lcOnv.>.' -~
|
\ /

(

MCP distribution

|

|

BXC| xH;xW; BxC{ xHxw; | |
SER SER | |
|

|

—

"
@
8
[
=
=
@
=
x
=)
7]
o
©
=
(o)
@
.=
-t
%
@
1]
3
o
=
(g
7]

I Maximum
\ response

N Image MCP
\._./ distribution

Class MCP
distribution



Proposed Method

Applications

* Our new classify paradigm

For each image: For each class: Classify images:

Class #1 Image #1i

Image #1
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Class #1 MCP
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Experiments — Quantitative Results
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* Main quantitative results:

Backbone Methods Explanation AWA2  Cal tc{l:lf {]:g 'I‘a‘"} CUB.200.2011
Baseline N/A 94.92% 04.21% 77.94%
ProtoTree [14] Single-Scale  90.60% 72.19% 18.00%
ResNet50 Deformable ProtoPNet [2]  Single-Scale 85.51% 03.88% 73.429%7
o ST-ProtoPNet [28] Single-Scale  93.76% 05.95% 76.34%1
PIP-Net [15] Single-Scale  85.99% 87.86% 70.99%T
MCPNet (Ours) Multi-Scale  93.92% 03.88% 80.15%
Baseline N/A 95.47% 96.42% 79.43%
ProtoTree [14] Single-Scale  92.29% 86.02% 13.03%
Inception V3 Deformable ProtoPNet [2]  Single-Scale  92.68% 07.22% 72.99%
) ST-ProtoPNet [28] Single-Scale  93.60% 06.99% 75.25%
PIP-Net [15] Single-Scale 43.82% 45.04% 6.76%
MCPNet (Ours) Multi-Scale  94.62% 05.76% 78.94%
Baseline N/A 96.55% 96.56% 84.55%
ProtoTree [14] Single-Scale  94.00% 78.82% 21.57%
ConvNeXt-tiny Deformable ProtoPNet [2]  Single-Scale  91.94% 03.65% 35.05%
ST-ProtoPNet [25] Single-Scale  94.22% 97.17% 81.84%
PIP-Net [15] Single-Scale  93.80% 06.61% 82.74%

MCPNet (Ours) Multi-Scale  95.61% 95.95% 83.45%
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Experiments - 5-shot Classification

* 5-shot for unseen class images classification:

Dataset Method Accuracy
Baseline 60.55%
ProtoTree [14] 33.68%
Deformable ProtoPNet [2] 19.71%
AWA?2
ST-ProtoPNet [ 28] 30.15%
PIP-Net [15] 26.17%

MCPNet (Ours) 713.79%
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* The effect of different number of channel per segment:

Dataset Channel  Accuracy
32 93.92%
AWA?2 16 93.95%
8 93.58%
32 93.88%
Caltech101 16 93.79%
8 93.51%
32 80.15%
CUB_200_2011 16 80.19%

8 81.22%
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« MCPNet (Ours) provides different scales concepts.

* Previous methods (e.g. PIP-Net) only provides single scale concepts.
MCPNet PIP-Net

#5

NAUTA, Meike, et al. Pip-net: Patch-based intuitive prototypes for interpretable image classification.
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MCPNet PIP-Net
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