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What is Explainable AI (XAI)?
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Black Box
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I see red color.
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Types of Explainable AI Methods

• Two types of explainable AI methods
• Post-hoc method

• Explainable the model after the training

• Inconsistent to prediction

• Inherent method
• Model is designed with interpretability built into their structure

• Performance trade-offs between accuracy and interpretability
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Motivation

• Providing low and mid-level explanations:

• A more comprehensive aspect to unveil the model

• Seamlessly integrated into various model (CNN-based)
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MCPNet(Ours) ProtoPNet [1,2,3]
Concept 

Bottleneck [4]
TCAV [5] CRAFT [6]

Explanation Type Inherent Inherent Post-hoc Post-hoc

Explanation Scale

w/o Concept Labels     

w/o Modifying Models     

Inherent

Multi-Level

[1] CHEN, Chaofan, et al. This looks like that: deep learning for interpretable image recognition.

[2] DONNELLY, Jon, et al. Deformable protopnet: An interpretable image classifier using deformable prototypes.

[3] NAUTA, Meike, et al. Pip-net: Patch-based intuitive prototypes for interpretable image classification.

[4] KOH, Pang Wei, et al. Concept bottleneck models. In: International conference on machine learning.

[5] KIM, Been, et al. Interpretability beyond feature attribution: Quantitative testing with concept activation vectors (tcav).

[6] FEL, Thomas, et al. Craft: Concept recursive activation factorization for explainability.
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Target

• An inherently hierarchical explanation method to unveil the model
• Providing multi-scale explanations

• Without compromising the performance

• Seamlessly integrate with various backbone (CNN-based)
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Proposed Method

• Proposed constraints
• Centered Kernel Alignment (CKA) loss

• Class-aware Concept Distribution (CCD) loss
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Proposed Method

• Centered Kernel Alignment (CKA) loss
• Disentangling segment semantics
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• Concept prototypes extraction

Proposed Method
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Proposed Method

• Class-aware Concept Distribution (CCD) loss
• Classifying via Multi-level Concept Prototypes distributions (MCP distribution)
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Proposed Method

• Our new classify paradigm
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Experiments – Quantitative Results
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• Main quantitative results:



Experiments – 5-shot Classification

• 5-shot for unseen class images classification:
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Experiments – Ablation Study

• The effect of different number of channel per segment:
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Experiments – Concept Visualizations

• MCPNet (Ours) provides different scales concepts.

• Previous methods (e.g. PIP-Net) only provides single scale concepts.
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NAUTA, Meike, et al. Pip-net: Patch-based intuitive prototypes for interpretable image classification.



Experiments - Explanations
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PIP-NetMCPNet



MCPNet: An Interpretable Classifier via Multi-
Level Concept Prototypes
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