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Large Object Detection is Harder

Courtesy: 
https://www.npr.org/2023/02/20/1158367204/tesla-driver
-killed-california-firetruck-nhtsa

Courtesy: 
https://www.wftv.com/news/local/2-die-when-tesla-crashe
s-into-parked-tractor-trailer-florida/KJGMHHYTQZA2HNA
HWL2OFSVIPM/

Most accidents involve large objects.
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Large Object Detection is Harder

[A] Zhu et al., CBGS for point cloud 3D detection, CVPR Workshop 2019
[B] Chen Wu, Waymo Keynote Talk, CVPR Workshop on Autonomous Driving 2023

Possible Reasons:
● Training Data Scarcity [A]
● Larger Receptive Field Requirements [B]
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Is Data Scarcity the Real Reason?

Liao et al, KITTI-360, TPAMI 2022

● KITTI-360 nearly balanced ratio of Large : Cars = 1:2
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Is Data Scarcity the Real Reason?

● SoTA Frontal KITTI detectors bad even on balanced KITTI-360 dataset.
● Data scarcity is NOT the only reason.

Zhang et al., MonoDETR: Depth guided transformer for Mono3D, ICCV 2023
Kumar et al., DEVIANT: Depth Equivariant Network for Mono3D, ECCV 2022
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Analysis

● Performance = function(Representation, Loss, Noise)
● Mono3D networks sensitive to large noise from larger objects.
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Analysis

● Dice loss > Regression losses under large noise (large objects).
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SeaBird Pipeline

● Train BEV Segmentation first with Dice Loss
● Finetune BEV Segmentation + Mono3D
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KITTI-360 (Single-Camera) Results

● SoTA on KITTI-360
● Outperforms frontal detectors and also old LiDAR detectors

Zhang et al., MonoDETR: Depth guided transformer for Mono3D, ICCV 2023
Kumar et al., DEVIANT: Depth Equivariant Network for Mono3D, ECCV 2022
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nuScenes (Multi-Camera) Results

● SoTA on nuScenes
● Outperforms BEV-based detectors

Zong et al., Temporal enhanced training of multi-view 3D object detector via historical object prediction, ICCV 2023
Zhang et al., BEVerse: Unified perception and prediction in birds-eye-view for vision-centric autonomous driving, arXiv 2022
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SeaBird Demo
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Conclusions
● Large Object Detection = Representation (Front / BEV)  + Loss
● Frontal detectors even with transformers do not work
● BEV detectors sub-optimal, improved by noise-robust Dice loss
● Dice loss > Regression losses under large noise (large objects)
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Summary

Support Project Website CodeDemo


