MM-Narrator: Narrating Long-form Videos with Multimodal In-Context Learning

Chaoyi Zhang, Kevin Lin, Zhengyuan Yang, Jianfeng Wang, Linjie Li, Chung-Ching Lin, Zicheng Liu, Lijuan Wang

University of Sydney Microsoft Advanced Micro Devices

How does MM-Narrator generate AD?

MM-Narrator is a training-free framework towards automatic **audio description (AD)** generation for **long-form videos** via iterations: for each scene, it perceives multimodal inputs (i.e., seeing visual frames and hearing chardialogues), recalls the context AD depicting past scenes, and infers AD prediction for the current scene.

Recurrent AD Generation

- Vanilla: Multimodal Experts + LLM
 - Captioner (visual perception)
 - ASR (audio perception)
 - GPT-4 (prompting)

Recurrent AD Generation

- Vanilla: Multimodal Experts + LLM
- Memory Mechanism: Short-term Memory Queue + Long-term Visual Bank

Recurrent AD Generation

- Vanilla: Multimodal Experts + LLM
- **Memory Mechanism**: Short-term Memory Queue + Long-term Visual Bank
- MM-ICL: Complexity-based Multimodal In-Context Learning

Memory Mechanism

• Short-term Memory Queue: past K AD predictions

Long-term Visual Memory

- Visual Bank (for frame-level character re-identification)
 - Key: Per-frame CLIP-ViT feature
 - Value: AD prediction
- Register-and-Recall:
 - Turn active when only one single individual is presented in the frame (via People Detector)

- i.e., typically in close-up shots of the character, making fra features compatible for character re-identification.
- **Cosine similarity** (over visual features) to re-identify similar appearances.

Note: Given any AD that covers multiple frames, this frame-level visual retriever supports the MM-Narrator in re-identifying multiple characters appearing in the video clip.

Multimodal In-Context Learning

Complexity-based MM-ICL for demonstration denoising

- 1. Prepare MM-ICL demonstration pool of (Q,A) pairs.
- 2. Query LLM to articulate the CoTs as reasoning steps *R*.
- 3. Construct an intuitive subset pool of (Q,R,A) tuples: select the most straightforward examples, quantified by the shortest number of R.
- 4. Conduct random demonstration sampling over the subset pool (step#3).

	What makes good examples for AD task?	How to find and use them for ICL?
Random MM-ICL	No specific assumption (any example might help)	Randomly sample demonstrations
Similarity-based MM-ICL	Similar MM examples (with similar scene appearances, subtitles, character names,)	Retrieve similar demonstrations
Complexity-based MM-ICL (our proposed appro.)	More intuitive MM examples help LLM to reason better	Denoise into a subset pool Perform random sampling

Experiment Results

- using classic captioning scores

• Comparison with fine-tuning based approaches

Method	Training-Free	$\text{R-L}\left(\uparrow\right)$	$C(\uparrow)$	S (†)	R@5/16(1)
ClipCap [41]	×	8.5	4.4	1.1	36.5
ClipDec [42]	×	8.2	6.7	1.4	-
AutoAD-I [22]	×	11.9	14.3	4.4	42.1
MM-Narrator	\checkmark	12.1	11.6	4.5	48.0

• Comparison with training-free LLM/LMM baselines

Method	LLM/LMM	R-L (†)	C (†)	S (†)	R@5/16(†)
VLog [6] VideoChat [27] MM-Vid [30]	GPT-4 GPT-4 GPT-4V	7.5 7.9 9.8	1.3 2.4 6.1	2.1 1.8 3.8	42.3 42.5 46.1
MM-Narrator w/o MM-ICL w/ MM-ICL	GPT-4 GPT-4	10.3 12.1	4.9 11.6	3.8 4.5	47.1 48.0

• Building MM-Narrator from Image Captioner

Experiment Results

- qualitative comparison

- AutoAD-II (finetuning-based SOTA)
- Vlog (training-free LLM based on GPT-4)
- MM-Vid (training-free LMM based on GPT-4V) •
- MM-Narrator (ours) •

AD Evaluation with SegEval

• Motivation: (1) low inter-annotator agreement; (2) a few performance drop on classic reference-based captioning scores when incorporating MM-Narrator with GPT-4V (for example, R-L, C, and B-1);

Method	R -L (↑)	C (†)	M (†)	B-1 (†)
MM-Narrator + GPT-4 + GPT-4V	$12.1_{\pm 0.4}$ $11.8_{\pm 0.1}$	$11.6_{\pm 0.4} \\ 7.0_{\pm 0.2}$	$5.7_{\pm 0.2}$ $6.5_{\pm 0.1}$	$11.8_{\pm 0.3} \\ 9.3_{\pm 0.1}$
MM-Narrator + GPT-4 + GPT-4V	$\frac{13.4_{\pm 0.0}}{12.8_{\pm 0.0}}$	$13.9_{\pm 0.1}$ $9.8_{\pm 0.2}$	$6.7_{\pm 0.0}$ $7.1_{\pm 0.0}$	${}^{12.8_{\pm 0.0}}_{10.9_{\pm 0.0}}$

AD Evaluation with SegEval

Motivation

• **Solution**: A segment-based GPT-4 evaluator (**SegEval**) to measure the recurrent AD generation, in terms of multi-domain qualities.

AD Evaluation with SegEval

- Motivation
- Solution
- Result

		Text-lev	vel Quality	Sequence-level Quality						
Method	LLM/LMM	Context-irrelevant Scores		Short-context Scores			Long-context Scores			
		Orig.	Cons.	Cohe.	Dive.	Spec.	Cohe.	Dive.	Spec.	
		±0.02	±0.02	±0.01	±0.06	±0.04	±0.01	±0.01	± 0.03	
GT	-	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
ClipCap [41]	GPT-2	0.43	0.42	0.26	0.35	0.35	0.26	0.42	0.33	
VLog [6]	GPT-4	1.03	0.88	0.34	0.55	0.52	0.32	0.57	0.43	
MM-Vid [30]	GPT-4V	0.85	0.78	0.51	0.81	0.66	0.53	0.84	0.62	
MM-Narrator	GPT-4	$1.05_{\pm 0.10}$	$1.03_{\pm 0.05}$	$0.52_{\pm 0.06}$	$0.70_{\pm 0.06}$	$0.66_{\pm 0.04}$	$0.57_{\pm 0.05}$	$0.70_{\pm 0.02}$	$0.61_{\pm 0.05}$	
MM-Narrator	GPT-4V	$1.49_{\pm 0.10}$	$1.45_{\pm 0.05}$	$0.94_{\pm 0.07}$	$1.01_{\pm 0.04}$	$1.13_{\pm 0.08}$	$0.87_{\pm 0.04}$	$1.05_{\pm 0.04}$	$1.14_{\pm 0.05}$	
MM-Narrator †	GPT-4	$0.95_{\pm 0.02}$	$1.06_{\pm 0.01}$	$0.62_{\pm 0.04}$	$0.75_{\pm0.01}$	$0.76_{\pm 0.01}$	$0.62_{\pm 0.04}$	$0.80_{\pm 0.03}$	0.71 p.63	
MM-Narrator †	GPT-4V	$1.45_{\pm 0.14}$	$1.46_{\pm 0.04}$	$0.98_{\pm 0.03}$	$\textbf{1.06}_{\pm 0.04}$	$1.24_{\pm 0.09}$	$0.94_{\pm 0.02}$	$\textbf{1.09}_{\pm 0.05}$	1	