Discovering and Mitigating Visual Biases through Keyword Explanation

Younghyun Kim*, Sangwoo Mo*, Minkyu Kim, Kyungmin Lee, Jaeho Lee, Jinwoo Shin CVPR 2024 Highlight

2024.06.04.

https://arxiv.org/pdf/2301.11104

Biases are everywhere in ML domain

There exist visual biases inherited from ML algorithm in real-world application

Google Photos automatic tagging

PULSE algorithm: low pixel image to high resolution image

https://www.bbc.com/news/technology-33347866

https://www.theverge.com/21298762/face-depixelizer-ai-machine-learning-tool-pulse-stylegan-obama-bias 2

Conclusion

These visual biases pose several critical problems

- Biases may cause fairness issue
- Biases may harm model performance

Classifier **mispredicts** blond male !

Rare in training examples (bias)

[Sagawa et al., 2019] Distributionally Robust Neural Networks for Group Shifts

However, visual biases are not interpretable

- Prior works visualized spurious features that are not human-readable
- Thus, they are hard to be directly utilized for debiasing

[Singla et al., 2022] Salient ImageNet: How to Discover Spurious Features in Deep Learning

B2T: Bias-to-text

- We use language to interpret visual biases
- We first extract B2T keywords, then use them to various applications:
 (a) debiased training, (b) CLIP prompting, and (c) model comparison

CLIP score

• CLIP score measures the similarity between keyword a and correctly or incorrectly classified images x from a validation set D

$$s_{\mathsf{CLIP}}(a; \mathcal{D}) := \sin(a, \mathcal{D}_{\mathsf{wrong}}) - \sin(a, \mathcal{D}_{\mathsf{correct}}).$$

Application

Validation of the CLIP score

Method

- CLIP score effectively identifies incorrect bias keywords
- e.g.) waterbird class in the Waterbirds dataset

Discovery

Can B2T identify the known biases?

- B2T discovers **spurious correlations** and **distributions shifts**
- e.g.) "man" for CelebA blond / "forest" and "ocean" for Waterbirds "illustration" and "drawing" for IN-R / "snow" and "window" for IN-C

	(a) CelebA blond		(b) Waterbirds		(c) ImageNet-R		(d) ImageNet-C snow / frost	
Keyword		Man	Forest	Ocean	Illustration	Drawing	Snow	Window
Samples								
Actual	blond	blond	waterbird	landbird	backpack	white shark	airliner	American egret
Pred.	not blond	not blond	landbird	waterbird	maze	envelope	damselfly	quill
Caption	person, a man with a beard.	actor as a young man .	a bird in the forest .	a bird in the ocean .	hand drawn illustration of a backpack.	a drawing of a shark attacking […]	airliner in the snow , photo.	a bird on a frozen window .

Sample-wise bias labeling

• B2T successfully infers sample-wise bias (or group) labels

Application

Conclusion

Novel real-world biases

- B2T explores **novel biases** in larger datasets
- e.g.) "cave," "fire," "bucket," and "hole" for Dollar Street "flower," "playground," "baby," and "interior" for ImageNet

(e) Dollar Street				(f) ImageNet				
Keyword	Cave	Fire	Bucket	Hole	Flower	Playground	Baby	Interior
Samples								
Actual	wardrobe	stove	plate rack	toilet seat	ant	horizontal bar	stethoscope	monastery
Pred.	poncho	caldron	oil filter	wheelbarrow	bee	swing	baby pacifier	arched ceiling
Caption	the cave is full of surprises.	a fire in the kitchen.	a bucket of water and a few tools.	the hole in the ground.	a yellow flower with a black head.	person on a swing in the playground .	a newborn baby boy in a stethoscope.	the interior of the church.

Debiased DRO training

Bias keywords can be used as group names for debiased distributionally robust optimization (DRO) training

		CelebA blond		Waterbirds	
Method	GT	Worst	Avg.	Worst	Avg.
ERM	-	47.7 ± 2.1	94.9	$62.6 {\pm} 0.3$	97.3
LfF [55]	-	77.2	85.1	78.0	91.2
GEORGE [74]	-	$54.9{\pm}1.9$	94.6	76.2 ± 2.0	95.7
JTT [44]	-	81.5 ± 1.7	88.1	$83.8{\pm}1.2$	89.3
CNC [86]	-	$88.8 {\pm} 0.9$	89.9	88.5 ± 0.3	90.9
DRO-B2T (ours)	-	90.4 ±0.9	93.2	90.7 ±0.3	92.1
DRO [66]	1	90.0±1.5	93.3	89.9±1.3	91.5

Motivation Method Discovery Application Conclusion

CLIP zero-shot prompting

 Bias keywords can improve the CLIP zero-shot classifier by integrating them into prompt

	CelebA blond		Waterbirds	
	Worst	Avg.	Worst	Avg.
CLIP zero-shot	76.2	85.2	50.3	72.7
+ Group prompt [85]	76.7	87.0	53.7	78.0
+ B2T-neg prompt	72.9	88.0	45.4	70.8
+ B2T-pos prompt (ours)	80.0	87.2	61.7	76.9

Model comparison

- Bias keywords can be used to analyze and compare different classifiers based on their keywords
- e.g.) architecture: ResNet vs. ViT

Keyword	Keyword Work			Supermarket		
Samples						
ViT-B	0	0	0	0		
RN50	0	Х	0	Х		
Actual (RN50)	dumbbell	dumbbell	shopping basket	shopping basket		
Pred (RN50)	dumbbell	horizontal bar	shopping basket	grocery store		
Caption	a set of dumbbells with weights.	person work s out in the gym.	a basket full of food.	woman shopping in a supermarket .		

Label diagnosis

 B2T can diagnose common labeling errors, such as mislabeling and label ambiguities

Keyword	Bee	Boar	Desk	Market
Samples				
Label	fly	pig	computer mouse	custard apple
Pred.	bee	wild boar	desktop computer	grocery store
Caption	a bee on a yellow flower.	wild boar in the forest.	the desk in the office.	fruit and vegetables at the market .

B2T: Bias-to-Text

 We interpret visual biases as keywords that enables the discovery of novel biases and the effective debiasing of vision models

