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Computational Pathology workflow

Unlike natural images, digitized biopsies of tissue samples (also called whole slide

images - WSI) are gigapixel in nature.
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Interpretability in current MIL frameworks

Existing MIL approaches can only provide patch-level interpretability.

What it can tell!

Positive

Lymph Nodes

What it cannot!

Larger epithelioid cells with nuclear irregularity and increased
cytoplasm in a background of small lymphocytes

Lu, Ming Y., et al. "Data-efficient and weakly
supervised computational pathology on whole-slide
images." Nature biomedical engineering (2021).




Motivation
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* Deep neural network-reliant workflows yield .
high performance. Handcrafted feature extraction

* However deep features are generally non-

\ interpretable. —
b9
T

* Pathologist-friendly interpretability directly
encoded in the feature embedding.
* However handcrafted feature-reliant workflows

often perform subpar.

Can we jointly leverage both to provide feature-level interpretability along with high performance?




Overview
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* For each WSI, patches and its nuclei maps are extracted. This is followed by
extracting deep features and handcrafted pathology feature for each patch.
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* Conventional MIL branch aggregates the patch-level deep features using
attention-based MIL to do WSI-level prediction.
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Patch-wise PAG Top-K
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Deep features

e Patch Attention-Guided Top-K (PAG Top-K) module differentiably selects the top
attended K patches by Conventional MIL branch.
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Top-K patches for WSI-level prediction, while providing feature-wise attention scores.



Quantitative Results

Novel co-learning of dual branches in SI-MIL mitigates the performance-
interpretability trade-off associated with self-interpretable methods.

Dataset: AUC
(LUAD vs. LUSC) IN ViT-S X 0919 0967 [0.898
TCGA-BRCA (N = 910) RetCCL X 0935 10976 0.891
(IDCvs. ILC) CTransPath X 10.967| 0974 0.897
TCGA-CRC (N = 320) DINO ViT-S X 0.957 0.974 0.897
(Hypermutated vs. not) PathFeat X 088 0950 0.818
PathFeat w/o H(-) « 0837 0914 0.720
2-stage training v 0932 0924 0.862
SI-MIL (ours) v [0.941] [0.968] [0.910




IDC (class 0)

ILC (class 1)

Automated patch and feature importance report

Unlike other MiILs, SI-MIL provides de novo feature-level interpretation
grounded on pathological insights.

(a) WSI w/ heatmap (b) Patch w/ nuclei map (c) Feature-level interpretation | (d) Representative features visualization
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Thank you!

Poster discussion
10:30AM - 12 Noon Thu 06/20

Email: saarthak.kapse@stonybrook.edu



