

MonoCD: Monocular 3D Object Detection with Complementary Depths

Longfei Yan¹, Pei Yan¹, Shengzhou Xiong¹, Xuanyu Xiang¹, Yihua Tan¹

¹School of Artificial Intelligence and Automation, Huazhong University of Science and Technology

- Monocular 3D object detection(Mono3D) has attracted widespread attention (e.g., in autonomous driving and robotics) due to its potential to accurately obtain object 3D localization from a single image.
- Advantage:
 - Lower cost
 - Simpler configuration
- Challenge:
 - Object depth estimation

Background

- Center-based Detectors:
 - Efficient 🗸
 - Local cues
- Transformer-based Detectors
 - Inefficient
 - Global cues 🗸

- Center-based Detectors:
 - Tendency: Explore multiple depth cues and formulate them as an ensemble to mitigate the insufficiency of single information
 - MonoFlex (2021CVPR): 4 depths per object
 - MonoGround (2022CVPR): 7 depths per object
 - MonoDDE (2022CVPR): 20 depths per object

- Is the greater the number of predicted depths, the better?
 - We observe a coupling phenomenon that existing multiple predicted depths tend to consistently overestimate or underestimate the true depth values

- Current multi-depth prediction methods are based on **local cues**
 - We attribute this coupling phenomenon to the fact that the local depth cues they used are all derived from the same **local features** around the object in the CenterNet paradigm.

Motivation

- Can we design a network that has both large and small biased depths?
- Can we utilize global features while ensuring real-time performance to avoid falling into coupling?

Core Idea

- It's better to listen and synthesize different opinions (different error signs)

proof:

Define two different depth prediction branches \hat{z}_1 and \hat{z}_2 as follows:

$$\begin{cases} \hat{z}_1 = Z^* + e_1 \\ \hat{z}_2 = Z^* + e_2 \end{cases}$$
 , $e_1 e_2 > 0$

The coupling depths error E_1 of \hat{z}_1 and \hat{z}_2 can be formulated as:

 $E_1 = |\omega_1 e_1 + \omega_2 e_2|$

By changing only the sign of the error in \hat{z}_1 without changing the magnitude of the error we get:

$$\hat{z}_1' = Z^* - e_1$$

The complementary depths error E_2 of \hat{z}_1' and \hat{z}_2 can be formulated as:

 $E_2 = |\omega_1 e_1 - \omega_2 e_2|$

By mathematical transformations we further express E_1 and E_2 as:

$$E_{1} = \sqrt{(\omega_{1}e_{1})^{2} + 2\omega_{1}\omega_{2}e_{1}e_{2} + (\omega_{2}e_{2})^{2}}$$

$$E_{2} = \sqrt{(\omega_{1}e_{1})^{2} - 2\omega_{1}\omega_{2}e_{1}e_{2} + (\omega_{2}e_{2})^{2}}$$

$$e_{1}e_{2} > 0$$

$$E_{2} < E_{1}$$

Core Idea

- Why we need multiple depths with different error signs?
 - Potential to improve existing methods (Take MonoFlex as an example)

MonoFlex: Zhang Y, Lu J, Zhou J. Objects are different: Flexible monocular 3d object detection. In CVPR, pages 3289-3298, 2021.

Method Overview

- **Global Branch**: predicting the global horizon heatmap of the image, serving as a global cue to generate the prediction of complementary depths (z_{comp}).
- Local Branch: predicting local information for each point of interest.

Method

- Introducing a new depth branch with global cue to avoid falling into coupling
 - Global cue comes from that all objects in one image almost lie on the same plane

(A new geometric cue is introduced)

Method

• Achieve complementary form in solving

- Existing

$$z_{key} = \frac{f_y H}{v_b - v_t} \qquad (1)$$
- Add

$$z = \frac{f_y y_{glo}}{v_b - c_v} \implies z_{comp} = \frac{f_y (y_{glo} - \frac{1}{2}H)}{\frac{1}{2}(v_b + v_t) - c_v} \qquad (2)$$

 On the official KITTI 3D benchmark, MonoCD reaches SOTA in most metrics without using additional data while ensuring real-time performance.

Mathods Vanues	Extra data	Test, AP_{3D}			Test, AP_{BEV}			Time(ms)
Methods, venues		Eazy	Mod.	Hard	Eazy	Mod.	Hard	
DDMP-3D [33], CVPR2021	Depth	19.71	12.78	9.80	28.08	17.89	13.44	180
Kinematic3D [1], ECCV2020	Video	19.07	12.72	9.17	26.69	17.52	13.10	120
AutoShape [19], ICCV2021	CAD	22.47	14.17	11.36	30.66	20.08	15.59	50
DCD [14], ECCV2022	CAD	23.81	15.90	13.21	32.55	21.50	18.25	-
MonoRUn [3], CVPR2021		19.65	12.30	10.58	27.94	17.34	15.24	70
CaDDN [26], CVPR2021	LiDAR	19.17	13.41	11.46	27.94	18.91	17.19	630
MonoDTR [8], CVPR2022		21.99	15.39	12.73	28.59	20.38	17.14	37
SMOKE [18], CVPRW2020		14.03	9.76	7.84	20.83	14.49	12.75	30
MonoDLE [21], CVPR21		17.23	12.26	10.29	24.79	18.89	16.00	40
MonoRCNN [29], ICCV2021		18.36	12.65	10.03	25.48	18.11	14.10	70
MonoFlex [40], CVPR2021	None	19.94	13.89	12.07	28.23	19.75	16.89	35
MonoGround [25], CVPR2022		21.37	14.36	12.62	30.07	20.47	17.74	30
GPENet [35], -		22.41	15.44	12.84	30.31	20.79	18.21	-
MonoJSG [16], CVPR2022		24.69	16.14	13.64	32.59	21.26	18.18	42
MonoCon [17], AAAI2022		22.50	16.46	13.95	31.12	22.10	19.00	25.8
MonoDETR [39], ICCV2023		25.00	16.47	13.58	33.60	22.11	18.60	43
MonoCD(Ours)	None	25.53	16.59	14.53	33.41	22.81	19.57	36
Improvement	v.s. second-best	+0.53	+0.12	+0.58	-0.19	+0.70	+0.57	-

 Proposed complementary depth can also be a plug-and-play module to boost multiple existing monocular 3d object detectors

Method	V	al, AP_{BE}	\overline{CV}	Val, AP_{3D}			
	Eazy	Mod.	Hard	Eazy	Mod.	Hard	
MonoDLE	24.97	19.33	17.01	17.45	13.66	11.68	
+ Ours	26.84	20.86	17.89	18.60	15.09	12.86	
Improvement	+1.87	+1.53	+0.88	+1.15	+1.43	+1.18	
MonoFlex	30.51	23.16	19.87	23.64	17.51	15.14	
+ Ours	31.49	23.56	20.12	24.22	18.27	15.42	
Improvement	+0.98	+0.40	+0.25	+0.58	+0.76	+0.28	
MonoCon	33.36	24.39	21.03	26.33	19.01	15.98	
+ Ours	34.60	24.96	21.51	26.45	19.37	16.38	
Improvement	+1.24	+0.57	+0.48	+0.12	+0.36	+0.40	

Results

GT

Pred

• z_{comp} from the global cue branch is significantly different from z_{dir} and z_{key} from the local cue branch and has the opposite error sign, which achieves error neutralization and makes the final predicted box closer to the ground truth

THANK YOU !

Longfei Yan¹, Pei Yan¹, Shengzhou Xiong¹, Xuanyu Xiang¹, Yihua Tan¹

¹School of Artificial Intelligence and Automation, Huazhong University of Science and Technology

