

Highlight

Navigate Beyond Shortcuts: Debiased Learning through the Lens of Neural Collapse

Yining Wang, Junjie Sun, Chenyue Wang, Mi Zhang[†], Min Yang [†] Corresponding Author

> Whitzard-Al Group School of Computer Science, Fudan University Poster ID: THU-AM-12065

Debiased Learning

- Biased datasets: each class is dominated by some bias attributes (e.g., background, texture...) \succ
 - majority of *bias-aligned* samples + minority of *bias-conflicting* samples
- > Learning shortcuts: the shortcut correlation between ground-truth labels & bias attributes
 - low generalizability on OOD test samples
- *Existing debiased learning*: reweight-based, augmentation-based, disentangle-based \geq
 - limited by extra, heavy training expenses

(a) BFFHQ: young

(b) BFFHQ: old

bias attribute: color

bias-aligned samples

bias-conflicting samples

(c) Dogs & Cats: cat (d) Dogs & Cats: dog e.g., bias-aligned samples and bias-conflicting samples

Neural Collapse phenomenon

> Neural Collapse phenomenon

- discovered by Papyan et al. [PNAS 2020]
- on *unbiased* datasets: last-layer feature space *converges* to elegant geometry (simplex ETF)
- optimal generalization, robustness, and interpretability

Neural Collapse on Biased Datasets

> Two Stages of Training

- shortcut learning: shortcut correlation, converge towards ETF
- *intrinsic learning*: intrinsic correlation, fail to collapse
- ➡ non-collapsed, sub-optimal feature space

Comparison of (a) testset accuracy and (b-d) Neural Collapse metrics on unbiased and synthetic biased datasets

Our Method

> Avoid-shortcut learning: ETF-Debias

- *ETF as priming*: approximate the "*perfect*" shortcut features
- skip the active learning of shortcuts, directly persue intrinsic correlations

Our Method

- > Avoid-shortcut learning: ETF-Debias
 - Prime Construction
 - *Prime Training*: classification objective + prime reinforcement regularization

 $\min_{\phi,\theta} \mathcal{L}_{CE}(\mathbf{x}, \mathbf{y}) = \sum_{i=1}^{N} \mathcal{L}(F_{\theta}(\mathbf{z}_{i,b}, \mathbf{m}_{b}), \mathbf{y}_{i,b}) \quad \mathcal{L}_{RE}(\mathbf{x}, \mathbf{b}) = \sum_{i=1}^{N} \mathcal{L}(F_{\theta}(\mathbf{z}_{i,b}, \mathbf{m}_{b}) - F_{\theta}(\mathbf{z}_{i,b}, \mathbf{m}_{null}), \mathbf{b})$

• Unbiased Classification: rely on intrinsic correlations $\hat{\mathbf{y}} = F_{\theta}(\mathbf{z}_{i,b}, \mathbf{m}_{null})$

Theoretical Justification

> Implicit re-weighting of gradients

- Follow the analysis of Neural Collapse from the perspective of *gradients*
- The pulling & forcing part of gradients are implicitly re-weighted by prime features

Gradient *w.r.t* classifier weights

Gradient *w.r.t* features

Experimental Settings

- > Dataset
 - 2 synthetic biased datasets: Colored MNIST, Corrupted CIFAR10
 - 3 real-world biased datasets: Biased FFHQ (BFFHQ), BAR, and Dogs & Cats
- > Baseline
 - 6 debiasing baselines
 - Reweight-based: LfF (NeurIPS 2020), LfF+BE (AAAI 2023)
 - Disentangle-based: EnD (CVPR 2021), SD (MM 2023)
 - Augmentation-based: DisEnt (NeurIPS 2021), Selecmix (NeurIPS 2022)

Experimental Results

Debiasing Performance

Dataset	Ratio(%) Vanilla	LfF ^{\$} [23]	LfF+BE [*] [19]	EnD*[30]	SD*[42]	DisEnt*[18]	Selecmix [*] [13]	ETF-Debias
	0.5	32.22 ± 0.13	$57.78{\scriptstyle\pm0.81}$	69.69 ±1.99	$35.93{\scriptstyle \pm 0.40}$	$56.96{\scriptstyle \pm 0.37}$	$68.83{\scriptstyle \pm 1.62}$	$70.53{\scriptstyle \pm 0.46}$	$71.63 {\pm} 0.28 (\textbf{+1.10})$
Colored MNIST	1.0	$48.45{\scriptstyle\pm0.06}$	72.29 ± 1.69	$80.90{\scriptstyle\pm1.40}$	$49.32{\scriptstyle \pm 0.58}$	$72.46{\scriptstyle \pm 0.18}$	$79.49{\scriptstyle \pm 1.44}$	83.34 ± 0.37	$81.97 {\pm} 0.26 {\rm (-1.37)}$
	2.0	$58.90{\scriptstyle \pm 0.12}$	$79.51{\scriptstyle \pm 1.82}$	$84.90{\scriptstyle\pm1.14}$	$65.58{\scriptstyle \pm 0.46}$	$79.37{\scriptstyle\pm0.46}$	$84.56{\scriptstyle \pm 1.19}$	$85.90{\scriptstyle \pm 0.23}$	86.00 ±0.03 (+0.10)
	5.0	$74.19{\scriptstyle \pm 0.04}$	$83.96{\scriptstyle\pm1.44}$	$90.28{\scriptstyle\pm0.18}$	$80.70{\scriptstyle \pm 0.17}$	$88.89{\scriptstyle\pm0.21}$	$88.83{\scriptstyle \pm 0.15}$	$91.27{\scriptstyle\pm0.31}$	$91.36 {\pm} 0.21 (\textbf{+0.09})$
Corrupted CIFAR-10	0.5	17.06 ± 0.12	31.00±2.67	$23.68{\scriptstyle\pm0.50}$	$14.30{\scriptstyle \pm 0.10}$	$36.66{\scriptstyle \pm 0.74}$	$30.12{\scriptstyle\pm1.60}$	$33.30{\scriptstyle\pm0.26}$	40.06 ±0.03 (+3.40)
	1.0	$21.48{\scriptstyle\pm0.55}$	$34.33{\scriptstyle\pm1.76}$	$30.72{\scriptstyle\pm0.12}$	$20.17{\scriptstyle \pm 0.19}$	$45.66{\scriptstyle \pm 1.05}$	$35.28{\scriptstyle\pm1.39}$	$38.72{\scriptstyle\pm0.27}$	$47.52 {\pm} 0.26 (\textbf{+1.86})$
	2.0	$27.15{\scriptstyle \pm 0.46}$	$39.68{\scriptstyle\pm1.15}$	$42.22{\scriptstyle\pm0.60}$	$30.10{\scriptstyle \pm 0.54}$	$50.11{\scriptstyle \pm 0.69}$	$40.34{\scriptstyle\pm1.41}$	$47.09{\scriptstyle \pm 0.17}$	$54.64 \pm 0.42 (+4.53)$
	5.0	$39.46{\scriptstyle \pm 0.58}$	$53.04{\scriptstyle\pm0.76}$	$57.93{\scriptstyle \pm 0.58}$	$45.85{\scriptstyle\pm0.21}$	$62.43{\scriptstyle \pm 0.57}$	$49.99{\scriptstyle \pm 0.84}$	$54.69{\scriptstyle \pm 0.29}$	65.34 ± 0.60 (+2.91)

Test set accuracy on 2 synthetic biased datasets

Dataset	Ratio(%) Vanilla	LfF ^{\$} [23]	LfF+BE [¢] [19]	EnD*[30]	SD*[42]	DisEnt*[18]	Selecmix ^{\$} [13]	ETF-Debias
Biased FFHQ	0.5	53.27±0.61	65.60±2.27	67.07±2.37	55.93±1.62	65.60 ± 0.20	63.07 ± 1.14	65.00 ± 0.82	73.60 ±1.22 (+6.53) 76.53 ±1.10 (±2.00)
	2.0	57.13 ± 0.64 67.67 ± 0.81	72.33 ± 2.19 74.80±2.03	73.33 ± 1.62 80.20 ± 2.78	61.13 ± 0.50 66.87 ± 0.64	09.20 ± 0.20 78.40±0.20	72.00 ± 2.51	69.80 ± 0.30	$85.20 \pm 0.61 (+5.00)$
	5.0	$78.87{\scriptstyle\pm0.83}$	$80.27{\scriptstyle\pm2.02}$	$87.40{\scriptstyle\pm2.00}$	$80.87{\scriptstyle\pm0.42}$	$84.80{\scriptstyle\pm0.20}$	$80.60{\scriptstyle \pm 0.53}$	$83.47{\scriptstyle\pm0.61}$	94.00 ±0.72 (+6.60)
Dogs & Cats	s 1.0 5.0	51.96 ± 0.90 76.59+1.27	71.17 ± 5.24 85.83 ± 1.62	78.87 ± 2.40 88.60 ± 1.21	51.91 ± 0.24 79.07+0.28	78.13 ± 1.06 89.12+0.18	65.13 ± 2.07 82.47 ± 2.86	54.19 ± 1.61 81.50+1.06	80.07 ±0.90 (+1.20) 92.18 ±0.62 (+3.06)
BAR	1.0	68.00+0.43	68.30+0.97	71.70+1.33	68.25+0.19	67.33+0.35	69.30 +1.27	69.83 +1.02	72.79 +0.21 (+1.09)
	5.0	$79.34{\scriptstyle\pm0.19}$	80.25 ± 1.27	82.00 ± 1.24	78.86±0.36	79.10 ± 0.42	81.19±0.70	78.79 ± 0.52	83.66 ±0.21 (+1.66)

Test set accuracy on 3 real-world biased datasets

Experimental Results

Visualization Comparison

(d) Biased FFHQ bias:gender

Background	Observation	Methods	Experiments	Conclusion				
	Conclusion							

> Theoretical Investigation

- For the first time, we investigate the Neural Collapse phenomenon on biased datasets
- Analyze the fundamental issues of biased classification

> Avoid-shortcut Learning

- Our proposed ETF-Debias achieves SOTA debiasing performance
- *No* additional training expenses
- Theoretical & experimental supports

Highlight

Thank you for listening!

Navigate Beyond Shortcuts: Debiased Learning through the Lens of Neural Collapse

If you have any questions, please contact us. Website of Whitzard-AI Group: <u>https://whitzard-ai.github.io/</u>

