

FocusMAE: Gallbladder Cancer Detection from Ultrasound Videos with Focused Masked Autoencoders

¹ Indian Institute of Technology, Delhi ² Postgraduate Institute of Medical Education & Research, Chandigarh

* Joint first-authors

Gallbladder Cancer(GBC)

- Nearly 85,000 deaths every year worldwide
- 5 year survival rate is 5%
- Mean survival 6 months (patients at advanced stage)
- Quick Metastasis due to adjacent contiguous liver tissues
- Silent progress often detected at a very late stage
- Early detection and timely surgery to improve the survival statistics

Why Ultrasound (US) Videos?

- US is the most common imaging modality for abdominal ailments scans are collected as video
- Highly accessible and low cost excellent candidate modality for GBC detection
- No existing work on AI-based GBC detection from US Videos prior to our work
- Previous works are based on Image based techniques, requiring radiologists to select the key informative frames from a US video observer bias, additional work
- Single frames may lack sufficient information for capturing disease manifestation

Major Challenges

- Anatomy
 - Non-regular anatomy of malignant gallbladder (loss of interface with adjacent organs, irregular anatomical structure)
- Low Image Quality
 - Noise, artifacts such as shadow, and spurious textures
- Hand-held Sensor Observer Bias
 - High degree of variability across radiologists, and medical centers
- Visual features of GBC can be similar to benign conditions

Challenges

Anatomy

Normal GB

Benign GB

Malignant GB

Normal, Benign GB - regular anatomy

Malignant - clear boundary is absent

Texture and Noise

DNNs often get biased by the adjacent organ tissues and spurious echogenic textures – focuses on textures instead of the GB

Challenge

Observer Variance

Due to the handheld sensor, the scanning plane may change – introduce observer bias

Left and right shows same GB from different scanning views – drastic change

Confounding Clinical Characterizations

Benign (left) GB wall thickening usually presents layered appearance.

Malignant (right) GB wall thickening can sometimes show such layered appearances

- Masked Autoencoders (MAEs) mask certain parts of the input and try to reconstruct it
 - Minimize reconstruction loss
 - Learn representation
- Most SOTA MAEs use random masking in images or videos
- Random masking is not robust to small pathology areas with large background (low info) regions
 - May end up learning the background representation

Various common random masking strategies

Idea: Selectively Bias Masking Probability

- Inflate the masking probabilities of the Regions of Interest (ROI) by π adaptively mask and reconstruct high information ROI – robust representation learning
- Excessive masking of ROI degrades performance use learnable sampling probabilities

Our Solution: FocusMAE

- Use Object Detector to generate high information region priors (candidate ROI)
- Bias the masking probability of the tokens within ROI to learn representation of the pathology/ disease

Region Selection Network

Model	mIoU	Precision	Recall
Faster-RCNN	71.1 ± 2.7 707 + 29	96.0 ± 2.6 98.1 + 2.3	99.2 ± 0.7 97.9 ± 1.5
CentripetalNet	60.4 ± 4.7	95.1 ± 2.5 95.1 ± 3.8	89.6 ± 7.3
Reppoints	69.1 ± 3.2	95.2 ± 3.9	99.7 ± 0.4

- Detectors only select GB vs background ROI
- Faster-RCNN achieves best mIoU with very high recall and precision

Dataset

- We contribute 27 malignant video samples to the publicly available GBUSV [1] dataset
- Dataset 91 videos
 - 59 malignant (41 patients) and 32 benign (32 patients)
 - 5-fold cross-validation (patient-level splits)

[1] Basu et al. "Unsupervised Contrastive Learning of Image Representations from Ultrasound Videos with Hard Negative Mining" MICCAI 2022.

Key Results

Group	Method	Backbone	Acc.	Spec.	Sens.
Harrison Errosofte	Radiologist A	_	$0.786 {\pm} 0.134$	1.000 ± 0.000	$0.672 {\pm} 0.201$
Human Experts	Radiologist B	-	$0.874 {\pm} 0.088$	$1.000 {\pm} 0.000$	$0.811 {\pm} 0.126$
	ResNet50 [25]	CNN	$0.711 {\pm} 0.091$	$0.822 {\pm} 0.102$	$0.672 {\pm} 0.147$
Image-based	InceptionV3 [43]	CNN	$0.734{\pm}0.089$	$0.953 {\pm} 0.072$	$0.647 {\pm} 0.107$
	Faster-RCNN [41]	CNN	$0.757 {\pm} 0.058$	$0.687 {\pm} 0.056$	$0.808 {\pm} 0.091$
	EfficientDet [44]	CNN	$0.789 {\pm} 0.084$	$0.761 {\pm} 0.099$	$0.828{\pm}0.061$
	ViT [13]	Transformer	$0.796 {\pm} 0.068$	$0.751 {\pm} 0.128$	$0.820 {\pm} 0.076$
	DEIT [46]	Transformer	$0.829 {\pm} 0.034$	$0.787 {\pm} 0.154$	$0.845 {\pm} 0.058$
	PVTv2 [49]	Transformer	$0.831 {\pm} 0.041$	$0.857 {\pm} 0.167$	$0.834{\pm}0.068$
	GBCNet [5]	CNN	$0.840 {\pm} 0.105$	0.843 ± 0.204	$0.843 {\pm} 0.072$
	US-UCL [8]	CNN	$0.808 {\pm} 0.127$	$0.871 {\pm} 0.217$	$0.776 {\pm} 0.109$
	RadFormer (SOTA) [6]	Transformer	$0.840 {\pm} 0.105$	$0.776 {\pm} 0.162$	$0.877 {\pm} 0.088$
Video-based	Video-Swin [34]	Transformer	$0.925 {\pm} 0.053$	$1.000 {\pm} 0.000$	0.903±0.085
	TimeSformer [9]	Transformer	$0.920{\pm}0.058$	$0.967 {\pm} 0.067$	$0.909 {\pm} 0.058$
	VidTr [33]	Transformer	$0.924{\pm}0.038$	$1.000{\pm}0.000$	$0.800 {\pm} 0.072$
	VideoMAEv2 [48]	Transformer	$0.942{\pm}0.066$	$0.937{\pm}0.078$	$0.940{\pm}0.120$
	AdaMAE [4]	Transformer	$0.947 {\pm} 0.053$	$0.952{\pm}0.066$	$0.913 {\pm} 0.116$
	FocusMAE (Ours)	Transformer	0.964±0.047	0.910±0.117	$1.000{\pm}0.000$

Qualitative Analysis

• FocusMAE (d) attentions are more guided to the pathology and anatomical structures as compared to VideoMAE (c) attentions.

Generality to CT-based COVID Detection

Group	Method	Acc.	Spec.	Sens.
Image-based	ResNet50 [25] InceptionV3 [43]	0.721 0.672	0.739 0.739	0.711 0.632
	ViT [<mark>13</mark>] DEIT [<mark>46</mark>]	0.770 0.770	0.783 0.696	0.763 0.816
Video-based	TimeSformer [9] VideoMAE [48]	0.700 0.852	0.739 0.956	0.474 0.789
	FocusMAE (Ours)	0.885	0.895	0.869

On the publicly available COVID-CT-MD [1] data.

[1] Afshar et al. Covid-ct-md, covid-19 computed tomography scan dataset. Scientific Data, 2021.

For more details (code, dataset), please visit project website

- https://gbc-iitd.github.io/focusmae

Interested to know about the Computer Vision Group at IIT Delhi?

- Please visit: https://vision-iitd.github.io