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Open-World Recognition (OWR)

« Modern Open-World Recognition (OWR) systems typically use Deep Metric Learning to learn to transform raw
data into vectorized representations, where distances between the representations reflect semantic similarities.

During testing, the learned model is applied to unseen open-world classes (not encountered during training),
with the expectation that similar items still remain close while dissimilar ones will be kept apart.
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A few notes:

The classes in D¢;.qin, and D;,q; are disjoint.

Even for the closed-world classes in Diy,in,
the learned embedding model can exhibit
significant variation in intra-class
compactness and inter-class separations.

When applied to the open-world classes in
D:est, this variation in representation
structures tends to become more severe.



Open-world Threshold Calibration

Problem Definition: Open-world calibration amounts to choosing appropriate thresholds of open-world classes
(e.g., wolf, sheep, mouse) for an embedding model trained on closed-set classes (dog, cat, bird) to balance the
trade-off between TPR and TNR, considering potential distribution shifts and uncertainties in the open world.

Mathematical formulations Let d and a be the distance threshold and minimum requirement for TPRest,
we formulate it as a constrained optimization problem:

maximize TNRyest, subject to TPRyest(d) > «
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Limitations of Existing Methods

*  Problems of existing methods: Traditional calibration methods like Platt Scaling and Isotonic Regression are
inductive, relying on a calibration dataset to learn general calibration rules under the assumption of identically
distributed data. This assumption often fails in open-world scenarios, where the test distribution is unknown
and dynamic, and the calibration dataset may not accurately represent the test data.

*  Our remedial solution Transductive Threshold Calibration (TTC) .

Labeled
data

Fit

v

Assumption

Inductive
Calibration

(a) (Traditional) Inductive Calibration

adws

N

Unlabeled test-
time disjoint data

a

Test

Distance
Threshold

© 2024, Amazon

VS

Web Services, Inc. or its affiliates.

Labeled Unlabeled test-
data time disjoint data
4k
Fit Estimate Test

|

Transductive Distance
. . ﬁ
Calibration Threshold

(b) (Our) Transductive Calibration



OpenGCN: Learning for Transductive Calibration

* Main Design Concepts:

* Incorporate TTC by directly predicting the connectivity p;; between data pairs using a Graph Neural Network
(GNN), which can be used for predicting TPR and TNR for the test data at each distance threshold.

TPRtest(d) = E ]‘pij>7' : ]‘dij<d/ E : 1pij>T TNRtest(d) = E : 1pij§7' ’ 1dij>d/ E : ]‘pij <7
i,jeDtest i,jeDtest i,jGDtest ’i,jEDtest

e Utilize both training data (for the OWR embedding model) and calibration data for calibration purpose,
maximizing the rich information contained within the closed-set data.
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Experiment Results — SameDist Scenario

* Experiment settings: SameDist — identical training and testing distributions. iNaturalist-2018  CUB-200

P A
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* Datasets: iNaturalist-2018, CUB-200, Cars-196.

e Evaluation metrics: Absolute Error in TPR or TNR. We evaluate at multiple target
values (TPR=80%, 90% and TNR=80%, 90%) to provide a comprehensive assessment.

AErpr = |TPR(d°Pt) — TPRarget| AErNR = |TNR(d°P*) — TNRyarget]

Table 1. Evaluation in the SameDist scenario using pointwise metrics of AETpr (optimize for TPR) and AETnr (optimize for TNR). The
smaller the metric, the better. For each dataset, the best and second best results are marked in Red and Blue, respectively. Shading in the
Table: Gray for posthoc calibration baselines, Cyan for clustering baselines, and Blue for our OpenGCN method. Best viewed in color.

Optimize for TPR=80% Optimize for TPR=90% Optimize for TNR=80% Optimize for TNR=90%

Method Cars CUB Inat Cars CUB Inat Cars CUB Inat Cars CUB Inat Rank
Platt scaling [37] 1.35% 5.10% 6.08% | 0.44% 2.63% 4.63% || 2.83% 2.02% 7.54% | 2.93% 6.49% 0.92% 6
Beta calibration [24] 1.13% 5.16% 551% | 0.02% 291% 3.26% || 294% 141% 7.57% | 2.718% 6.43% 0.93% 5
Isotonic regression [34] 0.82% 528% 453% | 090% 2.56% 3.54% || 1.94% 1.00% 5.78% | 1.26% 4.65% 0.65% 3
Histogram Calibration [33] || 0.82% 5.28% 4.53% | 0.90% 2.56% 3.54% || 1.94% 1.00% 5.78% | 126% 4.65% 0.65% 4
DBSCAN [13] 43.11% 18.87% 0.45% | 34.57% 9.18% 1.85% || 4.09% 13.77% 12.90% | 1.60% 9.32% 9.32% 7
Hi-LANDER [49] 344% 136% 10.54% | 2.02% 093% 7.00% || 0.06% 038% 2.35% | 010% 2.20% 0.21% 2
OpenGCN (ours) 0.33% 0.74% 1.59% | 0.72% 1.41% 2.37% || 061% 0.09% 0.74% | 0.58% 0.72% 0.10% 1
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Experiment Results — ShiftDist Scenario

* Experiment settings: ShiftDist — slightly shifted distributions between training and calibration.

* Evaluation metrics: The combined Mean Absolute Error for both TPR and TNR averaged over d € [0,2].

MAE omp = % / i (ITPR(d) — TPR(d)|+|TNR(d) — TNR(d)|) dd
0

Table 2. Evaluation on the Cars-196 dataset in the ShiftDist scenario across 13 common corruption and perturbation types using combined
global error metric of MAEcomb. The best results are marked in Red.

Noise Blur Weather Digital

Method Gauss Shot  Impulse | Defocus Motion Zoom Snow Fog Bright | Contrast Elastic Pixel JPEG Rank
Platt scaling 2.95e-2 2992 34le-2 | 2.66e-2 2.62e-2 5.02e-2 | 424e-2 4.37e-2 2.16e-2 | 4.6le-2  2.16e-2 2.24e-2 2.03e-2 4
Beta calibration 294e-2 297e-2 34le-2 | 2.67e-2 2.69e-2 5.06e-2 | 432e-2 4.37e-2 2.18¢-2 | 4.6le2  2.20e-2 2.23e-2 2.02e-2 5
Isotonic regression 2.88e-2 2.85e-2 3.38e-2 | 2.37e-2 23le-2 4.85e-2 | 407e-2 4.34e-2 1.83e-2 | 4.59%-2 1.85e-2 2.03e-2 1.80e-2 2
Histogram calibration 2.88¢-2 2.85e-2 3.38e-2 | 237e-2 23le-2 4.85e-2 | 407e-2 4.34e-2 1.83e-2 | 4.59%-2  1.85e-2 2.03e-2 1.80e-2 3
DBSCAN 496e-2 6.02e-2 7.79-2 | 9.8le-2 1.13e-1 1.22e-1 | 1.19e-1 4.02e-2 9.27e-2 | 4.53e-2  1.09¢-1 1.04e-1 8.2le-2 7
Hi-LANDER 7.65e-2  6.30e-2 6.59%-2 | 398e-2 5.33e-2 4.48e-2 | 594e-2 7.16e-2 5.09e-2 | 9.45e-2 4.42e-2 9.48e-2 69le-2 6
OpenGCN (ours) 1.33e-2 5.87e-3 1.66e-2 | 1.50e-2 1.71e-2 3.92e-2 | 1.42e-2 7.32¢-3 6.73e-3 | 7.08e-3 5.34e-3 1.15e-2 1.68e-2 1

Imp. over top baseline T || 53.82% 79.40% 50.89% | 36.71% 25.97% 12.50% | 65.11% 81.79% 63.22% | 84.37% 71.14% 4335% 6.67% | 55.03% @
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Experiment Results — DiffDist Scenario

* Experiment settings: DiffDist — significantly different distributions between training and calibration data. In
particular, we consider the following:

* Long-tailed calibration: We divide iNaturalist’s test classes into two sets based on cluster size, each containing
the same number of images. For calibration, we use the head set (with a more images per class) as the
calibration data and the tail set (with fewer images per class) for testing.

 Qut-of-domain calibration:

* For Cars, we transform its test partition into
sketches, while leaving the training and Table 3. Evaluation in the DiffDist scenario using the global error

calibration partitions untouched metric MAEomb. The best results are highlighted in Red.

. W | id d lib . h Method Cars: Sketch CUB: Cross-dataset iNat: Longtail
e also consider cross-dataset calibration, where PR T . S
the OpenGCN model is pretrained and fine-tuned Betedbmtn L L 2.120-2
) ] _ _ Isotonic regression 1.08e-1 1.15e-1 2.11e-2
on iNaturalist (general natural species images) Histogram Calibration 1.08e-1 1.15e-1 2.11e-2
. DBSCAN 5.16e-2 1.60e-1 7.21e2
but tested on CUB (bird images). Hi-LANDER 6.67e-2 1.30e-1 6.26¢-2
OpenGCN (ours) 3.54e-2 1.42¢-2 1.82¢-2
Imp. over top baseline 1 31.40% 87.65% 12.92%

e Evaluation metrics: The combined Mean Absolute Error.
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Takeaways for “Learning for Transductive
Threshold Calibration in Open-World Recognition”
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We formally define the open-world threshold calibration problem for DML-based open-world visual
recognition systems, identifying key challenges associated with the task.

We introduce OpenGCN, a meta learning framework that enables transductive threshold calibration via a
GNN. Importantly, OpenGCN does not rely on the assumption of matching distance distributions between
the calibration dataset and the test dataset.

The evaluation results underscore OpenGCN’s effectiveness across different distance distribution patterns
between the calibration dataset and test dataset, highlighting its practical applicability for threshold
calibration in DML-based open-world recognition.

(Limitations) Compared to traditional calibration methods, OpenGCN is less efficient and more susceptible
to over-parameterization. Furthermore, OpenGCN is not a calibration-data-free method as it still requires
some calibration data in addition to the closed-world data used for training the embedding model.

For more details, please refer to our paper at https.//arxiv.orqg/html/2305.12039v2!
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