

Pixel-level Semantic Correspondence through Layout-aware Representation Learning and Multi-scale Matching Integration

Yixuan Sun^{1,2,*}, Zhangyue Yin^{3,*}, Haibo Wang³, Yan Wang^{1,2}, Xipeng Qiu³, Weifeng Ge^{3,†} and Wenqiang Zhang^{1,2,3,†} ¹Academy for Engineering and Technology, Fudan University; ²Engineering Research Center of AI & Robotics, Ministry of Education, China; ³School of Computer Science, Fudan University {wfge, wqzhang}@fudan.edu.cn

https://github.com/YXSUNMADMAX/LPMFlow

Introduction

- Semantic Correspondence Aims To Establish Pixel-level Correspondence between Semantically Adjacent Image Pair.
- Requires high-quality patch-level representations with aligned semantic spaces; Requires matching representation in high resolution.

Task of Feature Matching

Task of Dense Matching

Task of Semantic Correspondence

Previous Frameworks

- Siamese Backbone
- 4D Matrix-based Refinement.

Recent Frameworks

- Siamese Backbone + Semantic Alignment.
- 2D Semantic Flow based Refinement.

Purpose

- Build up Semantic Correspondence in high resolution (Pixel-level)
- 1/2 or 1 as Original Input Resolution Maximum

New Challenges

- Semantic regions that share similar appearances are often confused
- Objects in different scales present a challenge in establishing correlations for details
- Nearby pixels are hard to be distinguished

Visualization for the effectiveness of three designed modules on three challenges. Ground truth is indicated in yellow, successes in green, and failures in red.

Our Approach

- Layout-aware Representation Learning
- Progressive Feature Super-Resolution
- Multi-scale Matching Flow Integration

Results (Comparison with other methods)

LPMFlow can clearly overcome the significant geometric appearance changes and distinguish local areas with similar appearance based on geometric information.

Results (Comparison with other methods)

LPMFlow can provide better fine-grained dense correspondence.

Results (Comparison with other methods)

Liu et al. 2020; Cho et al. 2021; Zhao et al. 2021; Sun et al. 2023;

LPMFlow can provide better fine-grained dense correspondence.

Evaluation

The Input Resolution of Our LPMFlow is 256x256.

	Desci	Performance				Generalizability		Efficiency				80 -					
Method		Corr Format	Spair-71K		PF-PASCAL			PF-WILLOW		TITAN RTX: 24GB			βB	70			
	Multi Scale		α : bbox		α : img		5	α : bbox	α : bkp	Params(M)		Mem	Time	70			-
			0.05	0.1	0.05	0.1	0.15	0.1	0.1	Head	Total	(GB)	(ms)	60 -			/
NC-Net[32]	×	4D Mtrx	-	20.1	54.3	78.9	86.0	-	67.0	0.2	27.6	1.2	222.9	50			_
SCOT[21]	×	4D Mtrx	20.0	35.6	63.1	85.4	92.7	-	76.0	-	44.5	4.6	133.5	50-			
DHPF[27]	\checkmark	4D Mtrx	-	37.3	75.7	90.7	95.0	77.6	71.0	5.8	50.3	1.6	58.2	¥ 40		///	
CHM[25]	×	4D Mtrx	22.7	46.3	80.1	91.6	94.9	79.4	69.6	7.1	94.1	1.7	55.3	PO			
CATs[3]	\checkmark	2D Flow	27.7	<u>49.9</u>	75.4	92.6	96.4	79.2	69.0	4.7	49.2	2.0	45.4	30 -		TransforMatche	r(iB
MMNet-FCN[48]	\checkmark	4D Mtrx	33.3	50.4	81.1	91.6	95.9	-	-	10.3	64.7	5.4	258.6			CATs(iBOT)	
TransMatcher[16]	\checkmark	4D Mtrx	-	53.7	80.8	91.8	-	65.3	76.0	0.9	87.9	2.7	54.2	20 -		CATs	
CATs* [3]	✓	2D Flow	30.7	55.2	77.8	93.1	96.8	86.3	79.5	5.7	90.7	2.8	54.2	10-		CHM SCOT	
TransMatcher* [16]	\checkmark	4D Mtrx	33.1	57.9	77.3	93.3	96.6	84.3	78.3	1.6	86.6	2.4	48.5			- ACTR	
ACTR* [38]	X	2D Flow	42.0	62.1	81.2	94.0	97.0	87.2	79.9	87.8	172.8	3.9	84.1	0		LPMFlow(Ours)	
LPMFlow*	\checkmark	2D Flow	46.7	65.6	82.4	94.3	97.2	87.6	81.0	93.9	178.9	3.8	85.7		0.01 0.05	0.1 0.15 Alpha	

Yields large Improvements over several benchmarks. Having the best Generalizability.

Evaluation

The Input Resolution of Our LPMFlow is 256x256.

Methods	aero.	bike	bird	boat	bott.	bus	car	cat	chai	cow	dog	hors.	mbik.	pers.	plan.	shee.	trai.	tv	all
NC-Net[12]	17.9	12.2	32.1	11.7	29.0	19.9	16.1	39.2	9.9	23.9	18.8	15.7	17.4	15.0	14.8	9.6	24.2	31.1	20.1
SCOT [6]	34.9	20.7	63.8	21.1	43.5	27.3	21.3	63.1	20.0	42.9	42.5	31.1	29.8	35	27.7	24.4	48.4	40.8	35.6
DHPF [11]	38.4	23.8	68.3	18.9	42.6	27.9	20.1	61.6	22.0	46.9	46.1	33.5	27.6	40.1	27.6	28.1	49.5	46.5	37.3
CHM [8]	49.6	29.3	68.7	29.7	45.3	48.4	39.5	64.9	20.3	60.5	56.1	46.0	33.8	44.3	38.9	31.4	72.2	55.5	46.3
CATs [2]	52.0	34.7	72.2	34.3	49.9	57.5	43.6	<u>66.5</u>	24.4	63.2	56.5	52.0	42.6	41.7	43.0	33.6	72.6	58	49.9
MMNet[15]	55.9	37.0	65.0	35.4	50	63.9	45.7	62.8	28.7	65.0	54.7	51.6	38.5	34.6	41.7	36.3	77.7	62.5	50.4
TMatcher[5]	59.2	39.3	73.0	41.2	52.5	66.3	55.4	67.1	26.1	67.1	56.6	53.2	45.0	39.9	42.1	35.3	75.2	68.6	53.7
CATs*[2]	56.7	41.3	77.8	35.0	54.8	59.8	45.2	69.9	31.4	63.7	57.6	62.5	46.7	49.1	43.2	43.5	76.4	64.1	55.2
TMatcher*[5]	57.1	47.4	83.5	42.3	56.8	57.0	55.4	75.3	34.5	66.1	64.2	60.2	52.8	55.2	40.5	46.0	75.1	65.8	57.9
ACTR*[13]	65.1	48.5	82.3	50.4	55.9	65.3	63.1	72.8	35.8	74.1	70.3	68.9	58.6	57.1	46.8	49.5	84.4	73.3	62.1
LPMFlow*	71.4	54.8	83.2	50.3	57.0	75.4	68.9	79.3	41.1	78.4	74.1	73.7	58.7	56.9	48.7	54.7	87.5	74.6	65.6

Yields large Improvements on a challenging dataset. Reach best result on 15/18 sub-classes.

Ablation Results

The Input Resolution of Our LPMFlow is 256x256.

LARL	PFSR	MMFI	$\begin{array}{l} \mathbf{SPair-71K}\\ \alpha_{bbox}=0.1 \end{array}$		Methods	$\begin{array}{l} \text{SPair-71K} \\ \alpha_{bbox} = 0.1 \end{array}$
\checkmark	\checkmark	\checkmark	65.6		LPMFlow	65.6
×	\checkmark	\checkmark	63.2 (2.4↓)		w/o Gradual Guidance of RPTC	64.5 (1.1↓)
\checkmark	×	\checkmark	62.0 (3.6↓)		w/o Self Contrastive Loss	63.9 (1.7↓)
\checkmark	\checkmark	X	63.9 (1.7↓)	w/o Region-based PE	64.8 (0.8↓)	
Methods			$\begin{array}{l} \text{SPair-71K} \\ \alpha_{bbox} = 0.1 \end{array}$	~ _	Methods	$\begin{array}{l} \text{SPair-71K} \\ \alpha_{bbox} = 0.1 \end{array}$
LPMFlow			65.6		LPMFlow	65.6
w/o Interac	ctive Super-Reso	lution	64.1 (1.5↓)		w/o Multi-Scale Flow Integration	64.3 (1.3↓)
w/o Interna	al Super-Resolut	ion	63.8 (1.8↓)		w/o C2F Refinement (16×16)	64.6 (1.0↓)
w/o Featur	e Super-Resoluti	on block	63.4 (2.2↓)		w/o C2F Refinement (4×4)	64.0 (1.6↓)

Pixel-level Semantic Correspondence through Layout-aware Representation Learning and Multi-scale Matching Integration

Thank You

Academy for Engineering and Technology, Fudan University;Engineering Research Center of AI & Robotics, Ministry of Education, China;School of Computer Science, Fudan University {wfge, wqzhang}@fudan.edu.cn