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Background & Motivation

Context-Aware Emotion Recognition (CAER)
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Background & Motivation

The Context Bias in the CAER Task
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® Context-specific semantics easily yield spurious  ® The indirect effect of the good context prior

shortcuts with emotion labels during training to follows ensemble branches, narrowing the
confound the model, giving erroneous results. emotion candidate space.
® Conversely, our CLEF effectively corrects ® The bad direct effect follows the context branch,

biased predictions. causing pure bias.



Methodology
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In addition to the vanilla CAER model, we introduce an additional context branch in a
non-intrusive manner to capture the pure context bias as the direct context effect. By
comparing factual and counterfactual outcomes, our framework effectively mitigates the
interference of the harmful bias and achieves debiased emotion inference.



Experiments

Methods mAP (%)
HECR [7] 30.02
TEKG [5] 31.36
RRLA [24] 3241
VRD [14] 35.16

SIB-Net [25] 3541
MCA [56] 31.73
EMOT-Net [19] 27.93
EMOT-Net + CLEF 31.67 (1
CAER-Net [20] 23.85
CAER-Net + CLEF 2744 (1
GNN-CNN [65] 28.16
GNN-CNN + CLEF 32.18 (1
CD-Net [53] 28.87
CD-Net + CLEF 32.51 (1
EmotiCon [32] 3528
EmotiCon + CLEF 38.05 (1

Quantitative results on EMOTIC.

Methods Accuracy (%)
Fine-tuned VGGNet [43] 64.85
Fine-tuned ResNet [13] 68.46
SIB-Net [25] 74.56
MCA [56] 79.57
GRERN [11] 81.31
RRLA [24] 84.82
VRD [14] 90.49
EMOT-Net [19] 74.51
EMOT-Net + CLEF 77.03 (1
CAER-Net [20] 73.47
CAER-Net + CLEF 75.86 (1
GNN-CNN [65] 7521
GNN-CNN + CLEF 79.53 (1
CD-Net [53] 85.33
CD-Net + CLEF 88.41 (1
EmotiCon [32] 88.65
EmotiCon + CLEF 90.62 (1

Quantitative results on CAER-S.



Experiments

EMOTIC Dataset
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Qualitative results of the vanilla and CLEF-based baseline on EMOTIC and CAER-S datasets.




Conclusion
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v" We are the first to embrace counterfactual thinking to investigate causal effects in the CAER
task and reveal that the context bias as the adverse direct causal effect misleads the models to

produce spurious prediction shortcuts.

v" We devise CLEF, a model-agnostic CAER debiasing framework that facilitates existing methods to
capture valuable causal relationships and mitigate the harmful bias in context semantics through
counterfactual inference. CLEF can be readily adapted to state-of-the-art (SOTA) methods with different

structures, bringing consistent and significant performance gains.

v Extensive experiments are conducted on several largescale CAER datasets. Comprehensive analyses

show the broad applicability and effectiveness of our framework.
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