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Mixture of Data Expert (MoDE)
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Contrastive Language-lmage Pretraining (CLIP)
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An Image is Worth A Thousand Words

[Tree guard to stop the cats The tiger reaches up to a tree
trunk in a wooded area

a cat with its front paws [ A picture took in a national park
stretched up against the tree

Topics are color-coded



Negative Quality in Web-Crawled Data

The annotation noise/conflict in language may result in false negative in CLIP training.
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Negative Quality in Web-Crawled Data

Contrasting with hard negative can improve CLIP training effectiveness

Hard Negative

“a cat with its front paws “The tiger reaches up to a
stretched up against the tree” tree trunk in a wooded area”



Learning Data Experts via Clustering

Clustering/Splitting along captions to remove false negative and increase hard negative,
improving the effectiveness of CLIP training.
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Learning Data Experts via Clustering

On each cluster, a model (termed as a Data Expert) is trained with more quality negative.
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(Condition each model
Language Embedding Space by SimCSE (EMNLP’21) with the training data.)



Represent Data Expertise via Fine-Grained Clusters
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Inference-Time Task Adaptation

Use Cluster centers to guide the ensemble for multi-modal prediction.
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CLIP Benchmark (26)
Zero-Shot Classification
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Efficiency & Effectiveness
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MoDE Provides Strong Representation

Approach ViT-B/32 ViT-B/16 ViT-L/14
ImageNet MetaCLIP 67.5 73.8 82.3
Linear Probing on MoDE-2 713 76.9 83.9

Concatenated Feature
MoDE-4 74.1 79.6 84.7
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Summary of MoDE

Data Expert

Deep Neural Network is naturally data-driven
Use Data to explain the capability of a model

Mixture of Data Expert for CLIP
* Scale up the “width” of CLIP System

MoDE offers both efficiency and effectiveness in CLIP training
MoDE can be applied in different task types flexibly
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