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| Introduction-Meshflow

« Optical Flow is the movements of all pixels on Meshflow is widely applied in
the picture plane over time. various vision applications.
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[1] Liu S, et al. Meshflow: Minimum latency online video stabilization. Proc. of ECCV, 2016.



| Introduction-Event Camera

* RGB images often loss fine texture details and
suffer motion blurs under extreme scenes.

RGB Image

« Event Cameraslll have several advantages over
traditional cameras: high temporal resolution,
high dynamic range, and low power consumption.
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[1] Gallego G, et al. A unifying contrast maximization framework for event cameras, with applications to motion, depth, and optical flow estimation. Proc. of CVPR, 2018.
[2] Gehrig M, et al. E-raft: Dense optical flow from event cameras. International Conference on 3D Vision (3DV), IEEE, 2021.



| Method 1 - HREM Dataset

* None of the event-based datasets involve the estimation of meshflow.
+ Existing event-flow datasets can’t provide high-quality meshflow labels extracting form optical flow.
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[1] Alex Z, et al. The multi-vehicle stereo event camera dataset: An event camera dataset for 3d perception. IEEE Robotics and Automation Letters, 2018.
[2] Mathias G, et al. Dsec: A stereo event camera dataset for driving scenarios. IEEE Robotics and Automation Letters, 2021.



| Method 1 - HREM Dataset

Dataset Generation: Camera trajectories and dynamic objects are randomly placed in 3D virtual scenes to
render high-frame-rate videos and optical flow labels, then events are generated from videos and meshflow

labels are extracted from optical flow.
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| Method 1 - HREM Dataset
High-Resolution Event Meshflow (HREM) Dataset

Scene Resolution Motion Pattern Dynamic Objects Extreme Conditions Dense Optical Flow Meshflow
Indoor, | 15804720 Random v v v y
outdoor

The first row is Events, the second is Optical Flow, and the third is Meshflow.



| Method 1 - HREM Dataset

Ablation experiment of HREM dataset:
« Meshflow achieves image alignment comparable to optical flow.

« Downsampling flow via bilinear interpolation twists the shape of objects compared to meshflow.
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| Method 2 - EEMFlow

1] ) ) . . . .
Pyramid Encoding Multi-scale Feature Correlation Meshflow Estimation
s Vio1ok presesseseany
.y (VY
¥ i Training E
. py 1 1
;’_ : ——————————— ~ X 3 : = 1
> I i context {"Group Shuffle | N i
i i | i MF,. || MFcr i
1 H 1
1 1 1 : 1 i
1 1 I 1 !
-+ ! ! Joontext i i ' L1 loss i
b . Event shared Multi-scale | | I| |(() E 9_’ 9 i g —_ E‘J _L 9 i,._--_--_--_--_--_-.'
Representation weighits Features : = N : g T 3 E ! g
1 1 o e e
: . | e i ® i i Inference i
1 o ! [ ] 1 1 | 1
I e \ A 1 1
: o« | Temmmmmeees ’ l |
1 N I N upsample 1
1 L4 |C 1 ~ 1
: - —0O : !
1 > U * context 1 |
: ° L] : : :
1
Il ______________________________ '__,: i MF, , ., .i
___________________ 1

EEMFlow (Event-based Meshflow Estimation):

* The light-weight encoder
« Building cost volume with dilated feature correlation
* Using group shuffle convolutions during decoding



| Method 2 - EEMFlow

Results for Event-based Meshflow Estimation:

« EEMFlow performs well across scenes and speeds, achieving SOTA on Average EPE metrics.

« EEMFlow's inference is fast, about 39 times faster compared to the well-performing FlowFormert1l.
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[1] Zhaoyang H, et al. FlowFormer: A transformer architecture for optical flow. Proc. of ECCV, 2022.



| Method 2 - EEMFlow

Qualitative comparison for Event-based Meshflow Estimation:

+ EEMFlow's subjectsive results are most similar to Meshflow GT.

Reference EVFlownet ERAFT KPAFlow Ours Meshflow(GT)



| Method 2 - EEMFlow

* In contrast to other methods, the estimation results of EEMFlow for image alignment have minimal shakes

Image Overlaid EVFlownet ERAFT EEMFlow(Ours)



| Method 3 - EEMFlow+

Optical Flow Estimation
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EEMFlow+ (Event-based Optical Flow Estimation):
The coarse to fine residual approach to progressively refine the flow prediction
Confidence-induced Detail Completion (CDC) module to enhance motion boundary details

during flow upsampling.



| Method 3 - EEMFlow +

The structure of CDC:

« The self-corrector outputs the correction flow AF to correct the error region, the confidence map W' to

retain corrected regions with high confidence.
» The self-correlation outputs the attention weight A* to focus on the error region, and supplements the

flow values of pixels which is warped by the corrected flow AF.
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| Method 3 - EEMFlow+

Results for Event-based Optical Flow Network:

« EEMFlow+ achieves the SOTA performances on
DSEC dataset.

 EEMFlow+ improves inference speed by +4.19x
compared to TMAL! (7.55FPS — 39.2FPS).

Methods FPST| IPE|| 2PE}| 3PE|| EPEL| AE]

MutilCM [39] - 76.6 | 485 | 309 | 347 | 14.0

EV-Flownet [52] | 22.3 | 554 | 29.8 | 186 | 2.32 | 8.12

OF-EV-SNN [4] - 537 | 202 | 103 | 1.71 | 6.34

EVA-Flow [50] - 15.9 - 3.20 | 0.88 | 3.31

ERAFT [11] 114 | 127 | 474 | 2.68 | 0.79 | 2.85

ADMFlow [33] 988 | 125 | 467 | 265 | 0.78 | 2.84

EFlowformer [21] | - 112 | 410 | 245 | 0.76 | 2.68

TMA [25] 7.55 | 109 | 397 | 230 | 0.74 | 2.68
EEMFlow+(Ours) | 392 | 114 | 393 | 2.15 | 0.75 | 2.67 e

Referenc E-RAFT TMA Ours

[1] Haotian L, et al. Tma: Temporal motion aggregation for event-based optical flow. Proc. of ICCV, 2023.



| Method 3 - EEMFlow +

Ablation experiment for CDC of EEMFlow+:

« The flow prediction corrected by CDC has more object details and better edge contours.

............

Events Confidence Map Corrected Flow without CDC with CDC




| Method 3 - EEMFlow +
Outdoor Indoor

The Advantages of Event-Meshflow Estimation: Task Method Avg
Slow  Fast Slow  Fast =

Optical | FlowFormer| 6.20 16.06 | 599 1527 | 10.88
Flow EEMFlow+ | 3.88 11.02 | 4.03 1092 | 7.46

* Event-meshflow networks are the most accurate Mesh- | FlowFormer| 599 15,12 5.74  14.95| 1045
flow EEMFlow 2.42 9.09 2.00 8.46 5.50

+ Events over RGB images in extreme scenes.

and the fastest.
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| Conclusion

€ We are the first to study a new problem that estimates meshflow from event camera.

€ \We build the first event-based meshflow dataset, named as HREM, superior in the high resolution,

dynamic scenes, complex motion patterns, and physically accurate events and meshflow label.

€ \We propose an Efficient Event-based MeshFlow network (EEMFlow), achieving SOTA performances

and inference speed of 142.9 FPS (25.5 to 38.7 times faster than compared methods).

€ We propose a Confidence-induced Detail Completion module (CDC), upgrading EEMFlow to

EEMFlow+ for optical flow estimation, achieving SOTA performances on DSEC dataset at high speed.
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