

電子排後大學 | 杭 N UNIVERSITY | Hangz

Generating Handwritten Mathematical Expressions From Symbol Graphs: An End-to-End Pipeline

Yu Chen^{1, *}, Fei Gao^{2, *}, Yanguang Zhang³, Maoying Qiao⁴, Nannan Wang^{5, †}

¹ Beijing Waiyan Online Digital Technology ² Hangzhou Institute of Technology, Xidian University
 <u>³ Hangzhou Dianzi University</u> ⁴ University of Technology, Sydney (UTS) ⁵ Xidian University

* Equal Contributions.

{fgao, nnwang}@xidian.edu.cn

Introduction

Introduction

• Handwritten Mathematical Expressions (HMEs)

- Complex structures
- Serious deformations
- Diverse writing styles

40E= 3×90=60 60 605A= 260 -2+2+2 57+2+142 ×68 2414 =>X

• HME Recognition (HMER) a grand challenge in the OCR community.

Input Image	DWAP (Baseline)	CAN-DWAP (Ours)	Method CROHME		ROHME 2014		CROHME 2016			CROHME 2019			
log	\log g	Man	Method	ExpRate \uparrow	$\leq 1 \uparrow$	$\leq 2\uparrow$	ExpRate \uparrow	$\leq 1 \uparrow$	$\leq 2\uparrow$	ExpRate \uparrow	ate \uparrow $\leq 1 \uparrow$ ≤ 2 59.50 63.4 - - - - 65.97 69. 71.06 78.4	$\leq 2\uparrow$	
		liog	Without data augmentation		-								
E(6)-F(G)	F(b) - F(G)	F(b) - F(a)	DWAP-MSA [40]	52.80	68.10	72.00	50.10	63.80	67.40	47.70	59.50	63.30	
		ue transver en transue	WS-WAP [24]	53.65	-	-	51.96	64.34	70.10	-	-		
COSTIN	$\sum \{n = 1\}^{\{ \inf y \}}$ $\int cos \langle pi \} \{n \}$	\sum _ { n = 1 } ^ { \infty }	$\{n = 1\} \land \{ \inf \{v\}\} \}$ MAN [28]* 54.05 68.76 72.21 50.56	50.56	64.78	67.13	100	100	is-add				
A-1 5		\frac { \cos \pi n } { n }	BTTR [46]	53.96	66.02	70.28	52.31	63.90	68.61	52.96	65.97	69.14	
		× ^ / 5 \ ± v ^ / 5 \	ABM [1]	56.85	73.73	81.24	52.92	69.66	78.73	53.96	71.06	78.65	
$x^{5} + y^{5} - 5 + 2y + 1 - 5$	-xy + 1 = 0	-5xy+1=0	DWAP (baseline) ^{\dagger}	51.48	67.01	73.30	50.65	63.30	70.88	50.04	65.39	69.39	
$(10001 - n)^{-2}$		$\frac{10000}{(10001-n)^{-2}}$ \sum_{n=1}^{(10001-n)^{-2}}	$sum_{n=1}^{1000}$	CAN-DWAP (ours)	57.00	74.21	80.61	56.06	71.49	79.51	54.88	71.98	79.40
	$\left \sum_{\{1,0,0,0,1,-n\}} \right \left \sum_{\{1,0,0,0,1,-n\}} \left \sum_{\{1,0,0,0,1,-n\}} \right \right \left \sum_{\{1,0,0,0,1,-n\}} \left \sum_{\{1,0,0,0,1,-n\}} \right \right \left \sum_{\{1,0,0,1,-n\}} \left \sum_{\{1,0,0,1,-n\}} \right \right \left \sum_{\{1,0,0,1,-n\}} \left \sum_{\{1,0,0,1,-n\}} \right \right \left \sum_{\{1,0,0,1,-n\}} \left \sum_{\{1,0,0,1,-n\}} \right \left \sum_{\{1,0,0,1,-n\}} \left \sum_{\{1,0,0,1,-n\}} \right \right \right \left \sum_{\{1,0,0,1,-n\}} \left \sum_{\{1,0,0,1,-n\}} \right \left \sum_{\{1,0,0,1,-n\}} \left \sum_{\{1,0,0,1,-n\}} \right \right \left \sum_{\{1,0,0,1,-n\}} \left \sum_{\{1,0,0,1,-n\}} \left \sum_{\{1,0,0,1,-n\}} \right \right \right \right \right \left \sum_{\{1,0,0,1,-n\}} \left \sum_{\{1,0,0,1,-n}} \left \sum_{\{1,0,0,1,-n}} \left \sum_{\{1,0,0,1,-n} \left \sum_{\{1,0,0,1,-n} \left \sum_{\{1,0,0,1,-n}} \left \sum_{\{1,0,0,1,-n} \left \sum_{\{1,0,1,-n} \left \sum_{\{1,0,0,1,-n} \left \sum_{\{1,0,1,-n} \left$			ABM $(baseline)^{\dagger}$	56.04	73.10	79.90	53.36	70.01	78.12	53.71	71.23	78.23
		0,120002 11, [2]	CAN-ABM (ours)	57.26	74.52	82.03	56.15	72.71	80.30	55.96	72.73	80.57	

CAN Li B, Yuan Y, Liang D, et al. When counting meets HMER: counting–aware network for handwritten mathematical expression recognition[C]//European Conference on Computer Vision. Cham: Springer Nature Switzerland, 2022: 197–214.

Introduction

Synthetic Data Augmentation ✓

- No effective generative model for generating high-quality HME images ×
 - Recomposion of real online HMEs
 - FormulaGAN: Image-to-Image (I2I) Translation

Solution

- HME Generation (HMEG) from symbol graphs of symbolilc sequences.
- Graph-to-Image (G2I) generation.
 [J. Johnson, et al. CVPR'18]

Challenges

• Critical (unambiguous) layout clarity

- including the size of each symbol &
- the positional relations between symbols
- *e.g.* x^2 , x^2 , x_2 , x_2
- MEs have infinite possible layouts and structures
 - It's impossible to collect completed training data for learning the layout predictor.

• Solutions:

- Less-is-More (LiM) training strategy
- Sequential BBox-to-Mask Transformation (B2M)

a novel end-to-end pipeline of graph → layout → mask → image for G2I generation

Solution

• Differences

Figure 1. Differences between (a) typical twostage graph-to-image generation pipeline and (b) our end-to-end pipeline.

(a) In previous methods, the real masks are available as the input.

(b) In contrast, we propose a novel end-to-end pipeline of graph \rightarrow layout \rightarrow mask \rightarrow image, and requires no real masks or non-differentiable alignment between layouts and masks.

Proposed HMEG Method

Overview

• Pipeline

Overview of our handwritten mathematical expression generator (HMEG)

Symbol Graph Construction & Embedding

• The input LaTeX sequence is converted to a symbol graph, and embedded into high-dimensional feature vectors

Adversarial Layout Prediction

• Layout Predictor / Discriminator via GEM

Yujia Li, Chenjie Gu, Thomas Dullien, Oriol Vinyals, and Pushmeet Kohli. Graph matching networks for learning the similarity of graph structured objects. In International conference on machine learning, pages 3835 - 3845. PMLR, 2019.

Sequential BBox-to-Mask Transformation (B2M)

• (1) BBox-to-Grid Mapping.

$$\mathbf{M}_i = \phi_{\text{mask}}(\mathbf{X} - x_{i,0}, \mathbf{X} - x_{i,1}, \mathbf{Y} - y_{i,0}, \mathbf{Y} - y_{i,1})$$

Sequential BBox-to-Mask Transformation (B2M)

• (2) Grid-to-Mask Projection

$$\mathbf{M}_{i} = \phi_{\text{mask}} (\mathbf{X} - x_{i,0}, \mathbf{X} - x_{i,1}, \mathbf{Y} - y_{i,0}, \mathbf{Y} - y_{i,1}).$$

$$\mathbf{M}_{i} = \phi_{\text{mask}} (\mathbf{X} - x_{i,0}, \mathbf{X} - x_{i,1}, \mathbf{Y} - y_{i,0}, \mathbf{Y} - y_{i,1}).$$

$$\mathbf{X} = \mathbf{X} + \mathbf{X} +$$

Less-is-More Learning (LiM) Strategy

• Challenge

- arbitrary number of symbols or relations between symbols
- a complete training set
- the difficulty in learning an effective model
- Solution: Less-is-More (LiM) learning strategy
 - training: merely use 1-degree
 symbol graphs
 - emphasis on local structures
 - testing: the learned GCN model can be applied to arbitrary symbol graphs, with arbitrary degrees of connections

• Image Decoder: CRN

Three generated images, at the resolution of 64 × 64, 128 × 128, and 256 × 256, respectively. All these images are used to calculate the losses for optimizing our model.

Image and Symbol Discriminators

Adverarial loss and symbol classification loss [AC-GAN, ICML'17]

• Loss Functions

$$\mathcal{L}_{img} = \lambda_1 \mathcal{L}_{pix} + \lambda_2 \mathcal{L}_{adv}^{img} + \lambda_3 \mathcal{L}_{adv}^{sym} + \lambda_4 \mathcal{L}_{aux}^{sym},$$

- *Pixel loss* \mathcal{L}_{pix} : First, we use the L1 distance between a generated image and the target formula image and as the pixel loss: $\mathcal{L}_{pix} = ||I \hat{I}||_1$.
- Image adversarial loss \mathcal{L}_{adv}^{img} : Second, we use the global image discriminant loss from D_{img} , to encourage the generated HME images in the real handwritten style.
- Symbol adversarial loss \mathcal{L}_{adv}^{sym} : Third, we use the symbol discriminative loss from D_{sym} , to improve the fidelity of generated symbols.
- Auxiliary Symbol Recognition Loss \mathcal{L}_{aux}^{sym} : Finally, we use the auxiliary symbol recognition loss from D_{sym} , to enforce the generator producing recognizable symbols.

Experiments

Settings

• Data: CROHME2014/2016/2019

- 126 different symbol categories, and
- 8 positional relations, i.e.

start, left superscript, superscript, subscript, below, above, right, end

• Implementation Details.

- 1st stage layout prediction: a batch size 64 and a learning rate 5e5, for 40,000 iterations.
- Ind stage mask refinement & image decoding: a batch size 8, a learning rate 1e4, and train for 600,000 iterations.
- Our codes are implemented by using Pytorch and a NVIDIA TITAN XP GPU.
- We use Adam as the optimizer for all networks.

Qualitative Comparison

realistic

styles

clear

strokes

•

handwritten

 $\sum_{p = \sqrt{a^2 + b^2 - 2ab\cos A}} \frac{1}{\frac{1}{2}(\frac{1}{a} + \frac{1}{b})} = \frac{2ab}{a + b} \qquad \frac{-b + \sqrt{b^2 - 4ac}}{2a} \qquad \int_0^\pi \cos(\frac{\theta}{2}) d\theta \qquad \frac{x}{a + \frac{x}{b - \frac{x}{a}}} \qquad \left[\int b dI\right] \qquad \frac{\pi r^2 h}{2}$ $\sin(\frac{\pi}{3}) = \frac{1}{2}$ Print $\left|\frac{ax_0+by_0+c}{\sqrt{a^2+b^2}}\right|$ CycleGAN $\frac{ax_{n} + by_{n} + c}{\sqrt{a^{2} + b^{2}}} = \frac{1}{p = \sqrt{a^{2} + b^{2}}} = \frac{2ab}{a + b} = \frac{1}{\frac{1}{2}(\frac{1}{2} + \frac{1}{b})} = \frac{2ab}{a + b} = \frac{-b + \sqrt{b^{2} - 4ac}}{2a} = \int_{0}^{\pi} \cos(\frac{\theta}{2})d\theta = \frac{2}{a + \frac{x}{b - \frac{x}{2}}} = \left[\int bdI \right] = \frac{\pi r^{2} h}{2} = \sin(\frac{\pi}{2}) = \frac{1}{2}$ ⁻ormulaGAN $\frac{|\frac{ax_0+by_0+c}{\sqrt{a^2+b^2-2ab\cos\lambda}}}{\sqrt{a^2+b^2}}| \qquad p=\sqrt{a^2+b^2-2ab\cos\lambda} \qquad \frac{1}{\frac{1}{2}(\frac{1}{a}+\frac{1}{b})} = \frac{2ab}{a+b} \qquad \frac{-b+\sqrt{b^2-4ac}}{2a} \qquad \int_0^{\pi} \cos\left(\frac{\theta}{2}\right) d\theta \qquad \frac{\Im}{a+\frac{ac}{b-\frac{\theta}{a+b}}} \qquad \left[\int bcll\right] \qquad \frac{\pi r^2 h}{2}$ $\sin(\frac{\pi}{3}) = \frac{1}{2}$ $\frac{a \times a^{2} + b \times a^{2} + c}{\sqrt{a^{2} + b^{2}}} = \sqrt{a^{2} + B^{2} - 2abcos A} = \frac{1}{2} \frac{ab}{a + b} = \frac{2ab}{2a} = \frac{-b + \sqrt{b^{2} - 4ac}}{2a} \int \frac{T}{a + b} \frac{x}{2a} = \frac{1}{2} \frac{x}{a + b} = \frac{1}{2} \frac{T}{a + b} = \frac{1}{2}$ Sg2im $\frac{a \times a + b \times a^{2} + b^{2}}{\sqrt{a^{2} + b^{2}}} = \sqrt{a^{2} + b^{2} - 2abcauA} \quad \frac{1}{\frac{1}{2}\left(\frac{1}{a} + \frac{1}{b}\right)} = \frac{2ab}{a+b} \quad \frac{-b + \sqrt{b^{2} - 4ac}}{2a} \int_{0}^{\pi} \cos\left(\frac{\theta}{2}\right) d\theta \quad \frac{\chi}{\alpha + \frac{\chi}{b - \frac{\chi}{a}}} \left[\int b dI \right] \quad \frac{T\Gamma^{2} h}{2} \quad Sin\left(\frac{\pi}{3}\right) = \frac{1}{2}$ Durs

Figure 5. Handwritten mathematical expressions generated by CycleGAN [71], FormulaGAN [41], Sg2im [24], and our method.

• Quantitative Comparison

Table 1. Comparison with existing methods on CHROME2019.

	SSIM \uparrow	$\mathrm{FID}\downarrow$	WER \downarrow	ExpRate ↑
CycleGAN [71]	0.757	84.14	0.671	0.026
FormulaGAN [41]	0.724	74.68	0.601	0.066
Sg2im [24]	<u>0.787</u>	10.02	0.393	<u>0.219</u>
Ours	0.793	<u>10.98</u>	0.326	0.316

The handwritten expressions generated by our method, are significantly better than Sg2im, in terms of clarity and structure

Comparison with SOTAs

• Diffusion Models

- These diffusion models cannot generate high– quality HMEs with realistic handwritten styles or recognizable symbols.
- Besides, their computational complexity is much heavier than ours.

Figure 7. Comparison with diffusion models. DiffSketcher and DiffAE generate HMEs conditioned on print formulas; while ControleNet and SD+LoRA take both the print formula and a textual prompt ("*a handwritten mathematical expression of latex code*") as input. We use official diffusion models, and fine-tune DiffAE and SD+LoRA using HMEs.

Qualitative Results

Figure 6. Illustration of the layouts and formula images generated by model variants, in the ablation study. The input formula is $\frac{1}{25}y^2 - \frac{8}{25}y$.

• Quantitative Results

Table 2.Performance indices w.r.t.the ablation study onCHROME19.The model variant in the last row is our baseline.

	$ $ SSIM \uparrow	FID↓	WER↓	ExpRate ↑	mIOU↑
Ours (full)	0.793	10.98	0.326	0.316	0.364
w/o LiM	<u>0.790</u>	11.55	<u>0.327</u>	<u>0.315</u>	0.335
w/o B2M	<u>0.790</u>	11.46	0.332	0.308	<u>0.354</u>
w/o LiM/B2M	0.786	13.30	0.365	0.279	0.338
Sg2im (base)	0.787	10.08	0.393	0.219	0.324

The LiM, B2M, and layout discriminator contribute significantly to the quality of layout prediction and image generation

Applications

• Mathematical Expression Manipulation

- edit in symbol graphs
- consistent chage with the editing operation.
- the manipulated images present
 - natural layouts,
 - recognizable symbols, and
 - clear strokes.

Figure 8. Illustration of expression manipulation using symbol graphs (LaTeX sequences).

• CROHME 2014/2016/2019

- base HMER model: CAN [Li et al., ECCV'22]
- 6000 additional generated samples, train for 120 epochs

Table 3. Results on CROHME14/16/19 testing sets and our generated images. *, † , *† denote using previous data augmentation, our synthetic data augmentation, and both, respectively.

	HMEG (generated)				HMER (real)					
	SSIM	CAN*	CAN^{\dagger}	StruRate	CAN	CAN*	CAN^{\dagger}	CAN*†		
CROHME14	0.789	52.1	54.1	98.1	44.7	52.9	50.2	55.4		
CROHME16	0.798	51.4	55.8	96.5	42.8	52.4	<u>53.9</u>	57.6		
CROHME19	0.793	55.4	56.4	97.7	39.3	48.4	<u>49.6</u>	58.5		

CAN Li B, Yuan Y, Liang D, et al. When counting meets HMER: counting–aware network for handwritten mathematical expression recognition[C]//European Conference on Computer Vision. Cham: Springer Nature Switzerland, 2022: 197–214.

Conclusions

Conclusions

Summary

- Handwritten Mathematical Expression Generation (HMEG) from symbolic sequences
- end-to-end Graph-to-Image (G2I) generation
- Less-is-More (LiM) learning strategy
- differentiable layout refinement module
- https://github.com/AiArt-HDU/HMEG

• Future Work

- boost the generation quality by via advanced networks (e.g. VQ–GAN or diffusion models)
- extend the proposed techniques to natural/artistic image generation
- boost the HMER by using {LaTeX, predicted layout, generated image} as pseudo labeled data

電子評技大學 | 杭 N UNIVERSITY | Hangz

Generating Handwritten Mathematical Expressions From Symbol Graphs: An End-to-End Pipeline

Yu Chen^{1, *}, Fei Gao^{2, *}, Yanguang Zhang³, Maoying Qiao⁴, Nannan Wang^{5, †}

¹ Beijing Waiyan Online Digital Technology ² Hangzhou Institute of Technology, Xidian University

³ Hangzhou Dianzi University ⁴ University of Technology, Sydney (UTS) ⁵ Xidian University

* Equal Contributions.

{fgao, nnwang}@xidian.edu.cn

