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Context: Blind Spot Denoising (BSD)

Blind spot denoising [9] concept (source :https://arxiv.org/pdf/1811.10980)
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Goal and Motivation

Goal: To restore images corrupted by real noise without supervision
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Challenges

● Because real-world noise is spatially correlated, it is more difficult to discriminate from texture 
patterns than iid noise

● State-of-the-art methods for iid Gaussian noise, such as Blind Spot Denoising (BSD), struggle with 
real-data denoising

● BSD uses context pixels to predict center pixels; if the noise at the context pixels is correlated with 
the noise at the center pixels, then the predictions can be biased
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Idea

Extend BSD to real-world noise by:

● adaptive masking ratio to decrease the prediction bias by reducing the correlation between context 
pixels and center pixels (larger center masks allow BSD to handle more non local correlations) 
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Idea

Extend BSD to real-world noise by:

● using local pixel shuffling of pixels with similar colors to break the correlation in the case of a 
highly spatially correlated regime

Patch corrupted with correlated noise Same patch when locally shuffled
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Contributions

● An analysis of BSD, showcasing the impact of various masking ratios on correlated noise, and 

presenting a method for estimating the noise correlation level

● Introduction of the local pixel shuffling technique to address noise correlation at its source

● Marked enhancements over the baseline BSD and sota results in self-supervised real-world 

denoising across multiple datasets
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Impact of the Masking Ratio on BSD Performance

● Noise covariance 

● The effectiveness of BSD is greatly influenced by: 

    i) the spatial correlation of the noise 

    ii) the masking ratio

● A lower masking ratio is better for the iid noise while

 a higher masking ratio is better suited for highly correlated noise.
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Handling High Noise Correlation with Local Pixel Shuffling

● The noisy image is partitioned into: 

   1. flat regions 

   2. textured regions  

● A random pixel permutation is applied to each

   sxs (e.g., s=4) tile within the flat regions.

● The local pixel shuffling improves BSD performance 

   in the case of highly spatially correlated noise.
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MASH

●  Infer the noise correlation magnitude

●  Define the optimal masking ratio based on (1.)

●  Apply the local pixel shuffling or not based on (1.) 

●  Run the BSD with the optimal configuration
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A Proxy for Noise Correlation Magnitude

vcvc

●  Apply BSD with low and high masking ratios           and            respectively     

●  Compute the noise level gap 

● If                 , apply the local pixel shuffling
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Results

(a) Quantitative comparison (b) Qualitative comparison
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Ablations and Computational Cost

(a) Ablations of MASH components (b) Efficiency comparison
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Thank you!
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