

b UNIVERSITÄT BERN

Masked and Shuffled Blind Spot Denoising for Real-World Images

Hamadi Chihaoui Paolo Favaro

Computer Vision Group, Institute of Informatics, University of Bern, Switzerland

Context: Blind Spot Denoising (BSD)

Blind spot denoising [9] concept (source : https://arxiv.org/pdf/1811.10980)

Goal and Motivation

Goal: To restore images corrupted by real noise without supervision

Challenges

• Because real-world noise is spatially correlated, it is more difficult to discriminate from texture patterns than iid noise

• State-of-the-art methods for iid Gaussian noise, such as Blind Spot Denoising (BSD), struggle with real-data denoising

• BSD uses context pixels to predict center pixels; if the noise at the context pixels is correlated with the noise at the center pixels, then the predictions can be biased

Idea

Extend BSD to real-world noise by:

• **adaptive masking ratio** to decrease the prediction bias by reducing the correlation between context pixels and center pixels (larger center masks allow BSD to handle more non local correlations)

Idea

Extend BSD to real-world noise by:

• using **local pixel shuffling** of pixels with similar colors to break the correlation in the case of a highly spatially correlated regime

Patch corrupted with correlated noise

Same patch when locally shuffled

Contributions

- An analysis of BSD, showcasing the impact of various masking ratios on correlated noise, and presenting a method for estimating the noise correlation level
- Introduction of the local pixel shuffling technique to address noise correlation at its source
- Marked enhancements over the baseline BSD and sota results in self-supervised real-world denoising across multiple datasets

Impact of the Masking Ratio on BSD Performance

• Noise covariance
$$\Sigma[\mathbf{i}, \mathbf{j}] = \begin{cases} \sigma^2 & \mathbf{i} = \mathbf{j} \\ \beta \frac{k - \|\mathbf{i} - \mathbf{j}\|}{k} \sigma^2 & 0 < \|\mathbf{i} - \mathbf{j}\| \le k \\ 0 & \text{otherwise} \end{cases}$$

1 2

• The effectiveness of BSD is greatly influenced by:

i) the spatial correlation of the noise

ii) the masking ratio

• A lower masking ratio is better for the iid noise while

a higher masking ratio is better suited for highly correlated noise.

Handling High Noise Correlation with Local Pixel Shuffling

- The noisy image is partitioned into:
 - 1. flat regions
 - 2. textured regions
- A random pixel permutation is applied to each sxs (e.g., s=4) tile within the flat regions.
- The local pixel shuffling improves BSD performance

in the case of highly spatially correlated noise.

MASH

- Infer the noise correlation magnitude
- Define the optimal masking ratio based on (1.)
- Apply the local pixel shuffling or not based on (1.)
- Run the BSD with the optimal configuration

A Proxy for Noise Correlation Magnitude

- Apply BSD with low and high masking ratios au^{low} and au^{high} respectively
- Compute the noise level gap $\varepsilon = |\hat{\sigma}_{\tau^{\mathrm{high}}} \hat{\sigma}_{\tau^{\mathrm{low}}}|$

• $au^{\text{optimal}} = \begin{cases} \tau^{\text{low}} & \text{if } \varepsilon \leq \varepsilon^{\text{low}}; \\ \tau^{\text{medium}} & \text{if } \varepsilon^{\text{low}} < \varepsilon < \varepsilon^{\text{high}}; \\ \tau^{\text{high}} & \text{if } \varepsilon^{\text{high}} < \varepsilon \end{cases}$

• If $\varepsilon^{\text{high}} < \varepsilon$, apply the local pixel shuffling

Results

					Noisy	DIP [5]	Self2Self [4]	NN+denoiser [6]	Baseline	Ours	GT
Method	SIDD Validation	SIDD Benchmarck	FMDD	PolyU						1110	8 1 6
BM3D [2]	25.65/0.475	25.65/0.685	30.06/0.771	37.40/0.953						1111	1 1 102
DIP[5]	32.11/0.740	-	32.90/0.854	37.17/0.912	A BASE REAL						1 1000
Self2Self[4]	29.46/0.595	29.51/0.651	30.76/0.695	37.52/0.926	A AND A		1000	A ALLER			11118
PD-denoising[7]	33.97/0.820	33.61/0.894	33.01/0.856	37.04/0.940		And All And All		When Martin R.	The States of	Street States &	ALL ADD F
NN+denoiser[6]	-	33.18/0.895	32.21/0.831	<u>37.66/0.956</u>		26.64	25.78	28.35	28.13	31.79	
APBSN-single[3]	30.90/0.818	30.71/0.869	28.43/0.804	29.61/0.897		1 Arrest				1000	
ScoreDVI[1]	<u>34.75</u> / 0.856	34.60/0.920	<u>33.10/0.865</u>	37.77/0.959						1000	-
Baseline	33.12/0.805	32.67/0.850	32.25/0.824	37.12/0.911		A A	1	1	E E	1	
Ours	35.06 / <u>0.851</u>	34.78 / <u>0.900</u>	33.71/0.882	37.62/0.932	Reput -	thereast	there are	Renaul .	Remain	and i	
						28.04	24.36	30.14	25.34	31.42	

(a) Quantitative comparison

(b) Qualitative comparison

Ablations and Computational Cost

				Method	Infer. time (s)	Params (M)	FLOPs (G)
Adaptive masking ratio	Local pixel shuffling	SIDD	FMDD	DIP [5] Self2Self [4]	146.2 3546.5	13.4 1.0	31.06 9.55
No No Yes Yes	No Yes No Yes	33.12 33.86 34.45 35.06	32.25 32.92 33.56 33.71	NN+denoiser [6] APBSN-single [3] ScoreDVI [1] Baseline Ours	897.6 121.4 81.2 24.6 75.3	13.4 3.66 13.5 0.99 0.99	31.06 234.63 37.87 11.44 11.44

(a) Ablations of MASH components

(b) Efficiency comparison

References

[1] J. Cheng et al. Score priors guided deep variational inference for unsupervised real-world single image denoising. ICCV 2023

[2] K. Dabov et al. Bm3d image denoising with shape adaptive principal component analysis. SPARS 2009

[3] W. Lee et al. Apbsn: Self-supervised denoising for real-world images via asymmetric pd and blind-spot network. CVPR 2022

[4] Y. Quan et al. Self2self with dropout: Learning self-supervised denoising from single image. CVPR 2020

[5] D. Ulyanov et al. Deep image prior. CVPR 2018

[6] D. Zheng et al. An unsupervised deep learning approach for real-world image denoising. ICLR 2020

[7] Y. Zhou et al. When awgn-based denoiser meets real noises. AAAI 2020

[8] J. Li et al. Spatially Adaptive Self-Supervised Learning for Real-World Image Denoising. CVPR 2023

[9] A. Krull et al. Noise2Void - Learning Denoising from Single Noisy Images

Thank you!