

Learning from Mixed and HR Datasets

- Real-world images are at mixed and high resolutions
- Most prior methods downsample to fixed resolutions

1. Extra SR models

• LR is an info bottleneck, not robust to distribution shift

2. Remove bottleneck, direct to high resolution?

Cannot learn from LR images (most web data)

Image Neural Field Diffusion Models

Yinbo Chen¹, Oliver Wang², Richard Zhang³, Eli Shechtman³, Xiaolong Wang¹, Michael Gharbi³ ²Google Research ³Adobe Research ¹UC San Diego

Image Neural Field Diffusion Models (INFD)

HR image in varied resolution

random downsample

- A neural field autoencoder that maps image pixels to a photorealistic image neural field
- The representation is supervised by patches of images at arbitrary resolutions
- A latent diffusion model is learned to model the distribution of image neural fields

Convolutional Local Image Function (CLIF)

- Point-independent decoding constrains the design and is not sufficiently powerful
- All we need from image neural fields: patch rendering + scale consistency
- Use a ConvNet to decode the info map, scale consistency is observed after training

CLIF (ours)

High-Resolution Generation in Different Domains

FFHQ Resolution: 1024×1024

Comparison to LR Diffusion + Extra SR Model

LDM + LIIF

Inverse Problems with Resolution-Agnostic Visual Prior

Mountains Resolution: 2048×2048

"A cute corgi sleeping on a book, 4k" Resolution: 2048×2048

Generate an image neural field and render it to a high resolution Diffusion can efficiently generate the compact latent (64×64 in examples)

LDM + Real-ESRGAN

Can learn from mixed-resolution training data and generate more details

• Image neural field diffusion is a resolution-agnostic visual prior • It can solve zero-shot inverse problems, with any-scale patch constraints Example: render given regions to 224x224 for CLIP similarity constraint