

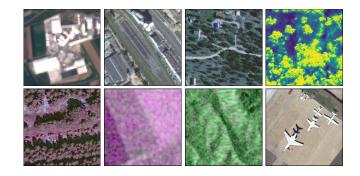
Parameter Efficient Self-Supervised Geospatial Domain Adaptation

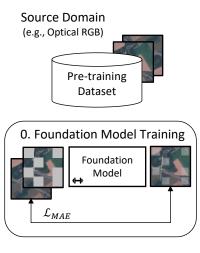
Linus Scheibenreif¹ Michael Mommert^{2,1} Damian Borth¹ {linus.Scheibenreif, damian.borth}@unisg.ch michael.mommert@hft-stuttgart.de

> ¹University of St.Gallen, Switzerland ²Stuttgart University of Applied Sciences, Germany

Background

Remote sensing data:

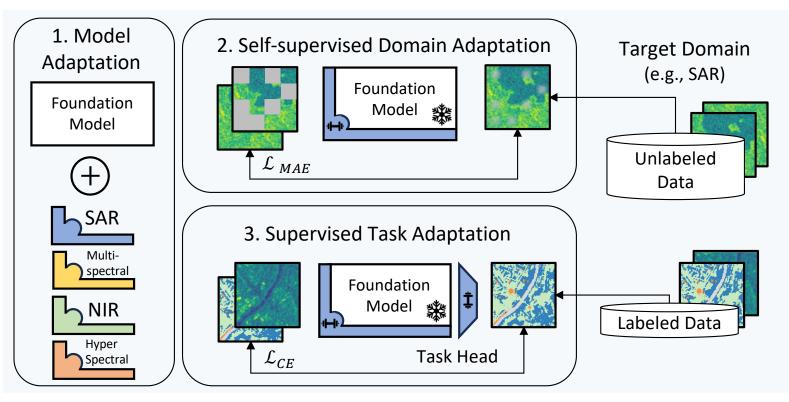

- Large amounts of unlabeled data
- Heterogeneous sensors
 - RGB, multi-spectral, synthetic aperture radar, ...


Visual foundation models:

• MAE, SatMAE, ScaleMAE, ...

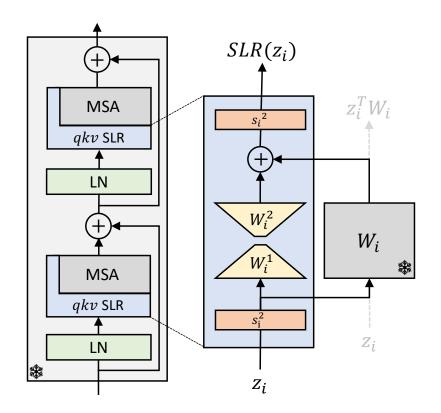
VFMs on unseen modalities and tasks:

- Poor zero-shot capabilities
- Fine-tuning is computationally expensive
- Often infeasible with small labeled datasets



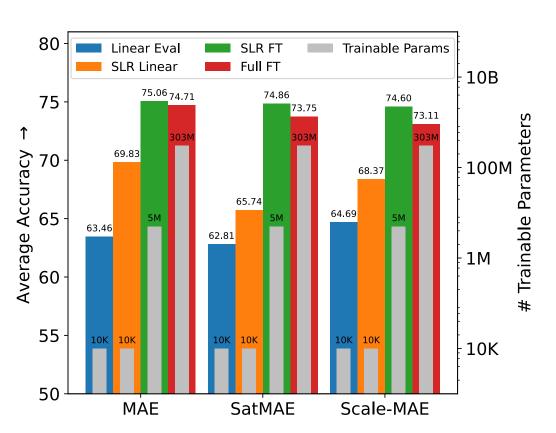
How to adapt visual foundation models for downstream tasks on unseen geospatial modalities?

Method



SLR Adapters

- Introduce new parameters for new modalities
- 1-2% additional model parameters
- Scaling and low-rank transformations



Results

Average performance over 8 remote sensing datasets for different VFMs

Results

Few-shot learning

Method	Params	k = 10	k = 100	Method	Params	k = 10	k = 100
Linear Eval.	10k	75 ± 0.5	89 ± 0.5	Linear Eval.	10k	63 ± 0.8	63 ± 0.2
SLR Linear	10k	74 ± 0.2	92 ± 0.5	SLR Linear	10k	71 ± 2.9	75 ± 0.1
SLR Scale	$0.5\mathrm{M}$	87 ± 0.6	$f 96\pm0.1$	SLR Scale	$0.5\mathrm{M}$	$f 74 \pm 3.0$	77 ± 0.3
SLR FT	7.3M	88 ± 2.0	$f 96\pm 0.1$	SLR FT	$7.3\mathrm{M}$	72 ± 3.0	$f 82\pm1.0$
Fine-tune	304M	82 ± 2.0	95 ± 0.4	Fine-tune	303M	64 ± 1.6	77 ± 3.0

Table 3. Few-shot results with SatMAE on EuroSAT.

Table 4. Few-shot results with MAE on EuroSAT-SAR.

Conclusions

- SLR adapters improve linear and fine-tuning performance in remote sensing
- Self-supervised adapter training allows large models to adapt to new modalities
- Training as little as 1-2% of model parameters suffices

Code: github.com/HSG-AIML/GDA

Poster Session 6: #355

Linus Scheibenreif linus.scheibenreif@unisg.ch Michael Mommert michael.mommert@hft-stuttgart.de Damian Borth damian.borth@unisg.ch

Institute of Computer Science