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1 Background
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Adversarial examples are tailored inputs with the purpose of 
confusing neural networks. (Visually similar to natural examples)

Introducing gradient ascent at the image level. 

Natural 
Examples

Adversarial 
Examples

Adversarial Perturbation
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Adversarial Training (min-max optimization):
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 Adversarially Robust Knowledge Distillation
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 Adversarially Robust Knowledge Distillation
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 Adversarially Robust Knowledge Distillation
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Untargeted Adversary Generation

Prediction Alignment of Clean 
and Adversarial Samples

2 Method
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 Intermediate Adversarial Knowledge Distillation
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Objective Function

Re-weighting

2 Method

We theoretically prove that such a weighting
mechanism captures the localized κ-Lipschitz
smoothness of the student model.
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 Dual-branch Adversarially Robust knowledge dIstillatioN (DARWIN)
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Attraction

2 Method

Repulsion

Dual-Branch Knowledge Distillation



9

 Dual-branch Adversarially Robust knowledge dIstillatioN (DARWIN)
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Attraction

2 Method

Repulsion

Dual-Branch Knowledge Distillation

We further demonstrate that our DARWIN method minimizes
an upper bound of the adversarially robust risk when
incorporating intermediate adversarial samples with the re-
weighting mechanism during robust knowledge distillation.
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 Standard Comparison (Distillation from a Large Model):
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Robust Distillation from ViTs: Self-Distillation w/ Generated Data:

Experiments & Analyses
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Attention Visualizations:Ablations:

Experiments & Analyses

Impact of Each Module

Diverse Weighting Strategies
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4 Conclusion
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 Contributions:
 We propose a novel robust knowledge distillation method that integrates intermediate

adversaries along the adversarial path. An adaptive weighting mechanism is proposed to

calibrate the influence of each intermediate sample to facilitate the distillation of adversarial paths.

Our strategy also leads to minimizing an upper bound of the adversarially robust risk.

 To capture relations between decision boundaries, we devise a dual-branch mechanism by

harnessing the complementary characteristics of untargeted and targeted adversarial

samples. This inter-class relational learning facilitates a more effective robustness transfer.

 Extensive experiments showcase the superiority of our method compared with the state-of-the-

art approaches across various settings, including diverse backbones, auxiliary data, and cross-

dataset distillation.
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