

Pixel Understanding with Visual Instruction Tuning

Yuqian Yuan*, Wentong Li*, Jian Liu, Dongqi Tang, Xinjie Luo, Chi Qin,

Lei Zhang, Jianke Zhu⁺

*Equal Contribution +Corresponding author

https://github.com/CircleRadon/Osprey

Motivation

Object Category: person

Part Taxonomy: body

Attribute: color, position ...

Caption: region short / detailed

description

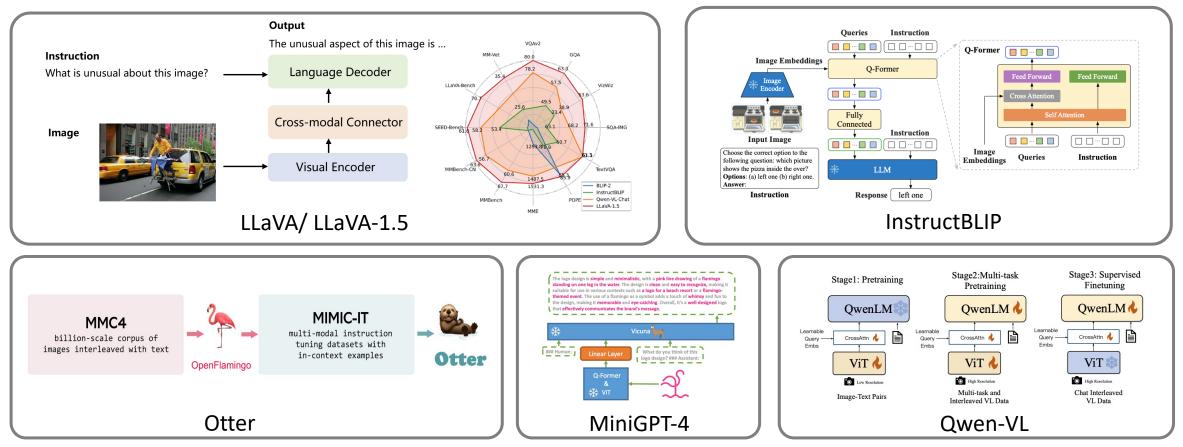
SAM "Segment Everything" Predictions

Fine-grained Region/Pixel Understanding

Rich semantic information containing different granularities

Background — Multimodal Large Language Models

Image-level understanding



[Liu et al. 2023] Visual instruction tuning.

[Liu et al. 2023] Improved baselines with visual instruction tuning.

[Dai et al. 2023] Instructblip: Towards general-purpose visionlanguage models with instruction tuning.

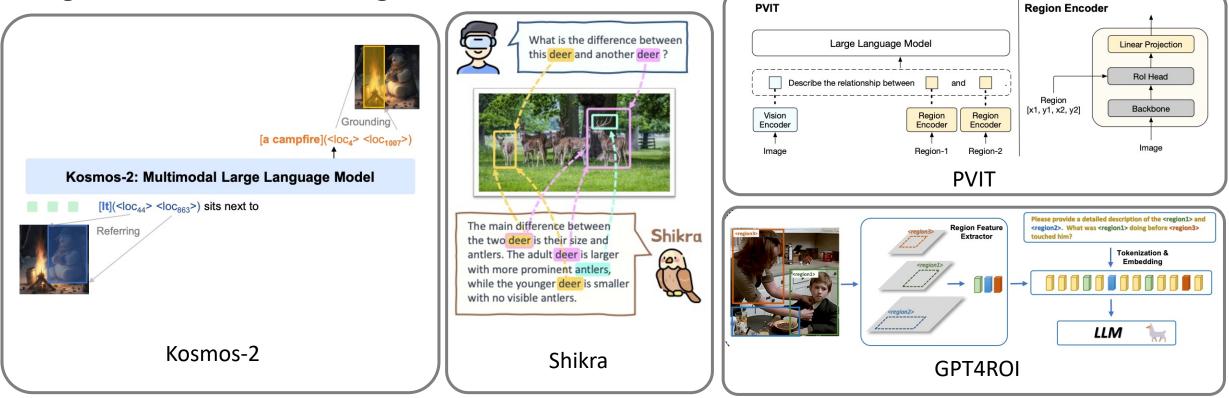
[Li et al. 2023] Otter: A multi-modal model with in-context instruction tuning.

[Zhu et al. 2023] Minigpt-4: Enhancing vision-language understanding with advanced large language models.

[Bai et al. 2023] Qwen-vl: A frontier large vision-language model with versatile abilities.

Background — Multimodal Large Language Models

Region-level understanding



[Peng et al. 2023] Kosmos-2: Grounding multimodal large language models to the world.

[Chen et al. 2023] Shikra: Unleashing multimodal Ilm's referential dialogue magic.

[Chen et al. 2023] Position-enhanced visual instruction tuning for multimodal large language models.

[Zhang et al. 2023] Gpt4roi: Instruction tuning large language model on region-of-interest.

Comparisons with box-level referring



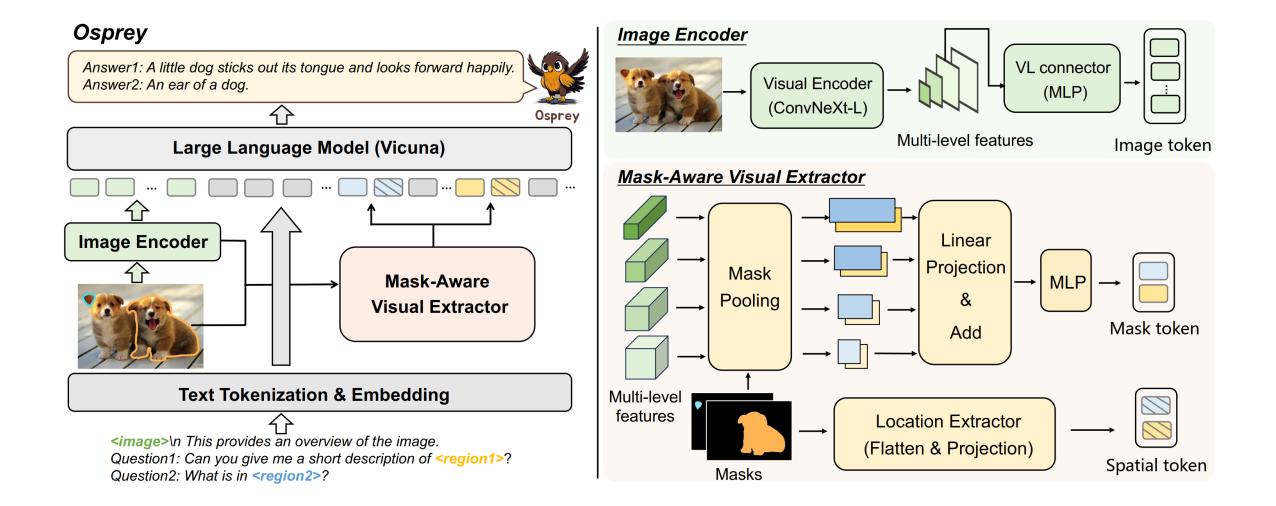
Box-level referring

- involve irrelevant background features and lead to inexact region-text pair alignment for visual instruction tuning on LLM.
- not be able to precisely indicate the object, resulting in semantic deviation.

Ours (Mask-level referring)

- Precise regional representation.
- Higher resolution for input images.
- 🕒 U
 - Understand regions with various granularity.

Architecture



Method

Convolutional CLIP Vision Encoder

- ConvNeXt-Large CLIP model
- **512x512** input image size
- Multi-level image features
- Adopt the **"res4"** stage as the image-level features

Mask-Aware Visual Exactor

- Mask Token
 - Mask Pooling: $V_{ij} = \mathcal{MP}(\mathbf{R}_i, \mathbf{Z}(x)_j)$ • $t_i = \sigma(\sum_{i=1}^{4} \mathbf{P}_j(V_{ij}))$
- Spatial Token
 - Resize 224, flatten and project to s_i

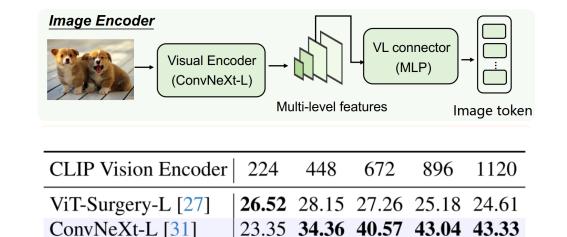
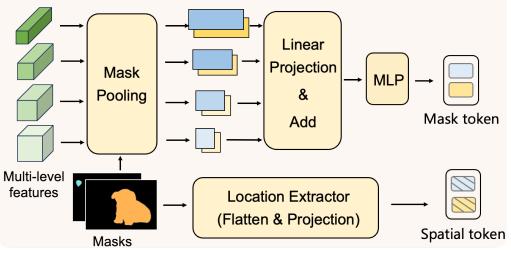


Table 6. Panoptic segmentation comparisons (PQ) using different vision encoders with different input sizes on ADE20K-150 [54]. The ground truth mask is used for recognition evaluation.

Mask-Aware Visual Extractor



How to create mask-text instruction data?

Current Data

COCO、RefCOCO、RefCOCOg、RefCOCO+ ...

- Segmentation & Detection
- Categories
 - person
- Mask region captions
 - the lady with the blue shirt.
 - the back of an older woman with her hair in a barrette with a blue jacket on.
 - navy blue shirt.
 - woman back in blue.
 - a woman is wearing blue sweater.

Expected data

Question: Can you give me a detailed description of <**region**>?

Answer: The woman in **<region>** is wearing a gray shirt, jeans, and glasses. She has short hair and a watch on her wrist. She is shopping in the lively market, browsing through the fresh produce, such as fruits and bags.

Question: What color is the woman's sweater in <**region**>? **Answer:** Blue.

Question: Please describe the atmosphere of the market. Answer: The market has a bustling and lively atmosphere. There's a sense of excitement and energy as people gather around the fresh fruits and bags for sale. The variety of items available, as well as the interactions among customers, contribute to the vibrant ambience of the market scene.

Mask-text instruction data creation

Use strong LLM-based teacher GPT-4

Image-level description (LLaVA-115K)

The image presents a lively market scene with a group of people buying fruits and bags. There are multiple individuals in the market, all browsing through the fresh produce available...

Categories & bboxes (COCO)

person: [0.507,0.409,0.698,0.740], person: [0.243,0.496,0.558,0.746], handbag: [0.473,0.110,0.607,0.201], orange: [0.761,0.537,0.820,0.569],

Mask region captions (RefCOCO、 RefCOCO+、 RefCOCOg)

<region1>: gray shirt wearing glasses.<region2>: the lady with the blue shirt.<region3>: a woman in glasses shops in an open air fruit market.

different prompts

different types of responses

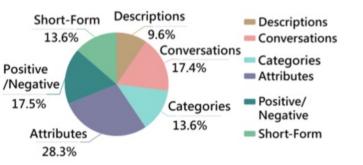
Overview of Osprey-724K dataset

Answer: In all regions, there are treats or cakes displayed. In <region9>, there is a plated item with dots or a pattern on it, placed above a big white bone. It seems to be a celebratory arrangement of doggy treats and cakes. Meanwhile, in <region7> and <region8>, there are two small dog treats or bones sitting on a plate. These treats may be specially made for dogs with some writing or decoration on them.

Question: Can you provide any more details about the dog and its surroundings based on the descriptions?

Answer: The dog in the image is black and brown and is sitting on a blue chair cushion, as seen in <region5>. The dog is surrounded by celebratory doggy treats and cakes, as mentioned in <region7> and <region8>. The presence of the treats and the dog's position on the chair suggests a special occasion or celebration. The overall theme of the image seems to be centered around the dog and its enjoyment of the treats and cakes.

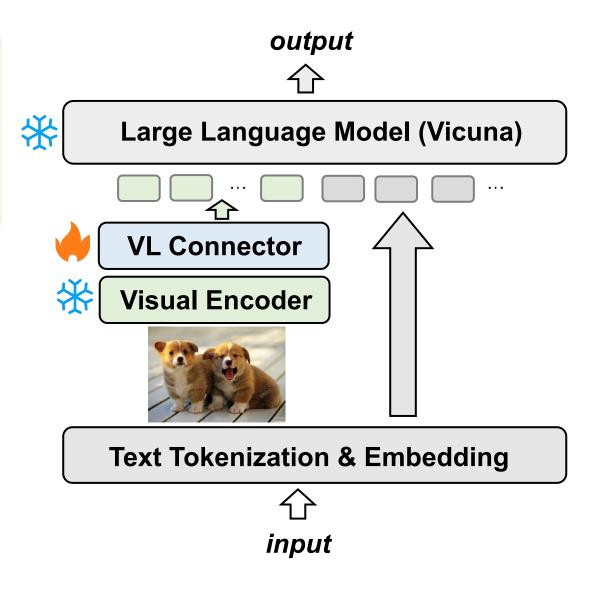
Туре	Form	Raw Data	GPT-4	#Samples
Object-level	Descriptions	COCO/RefCOCO/RefCOCO+/	1	70K
	Conversations	RefCOCOg/LLaVA-115K	1	127K
Part-level	Categories	PACO-LVIS	1	99K
	Attributes	PACO-LVIS	1	207K
Robustness	Positive/Negative	COCO/RefCOCO/RefCOCO+/	×	64K/64K
&Flexibility	Short-Form	RefCOCOg/LLaVA-115K/LVIS	1	99k



Training Stage 1: Image-Text Alignment Pre-training

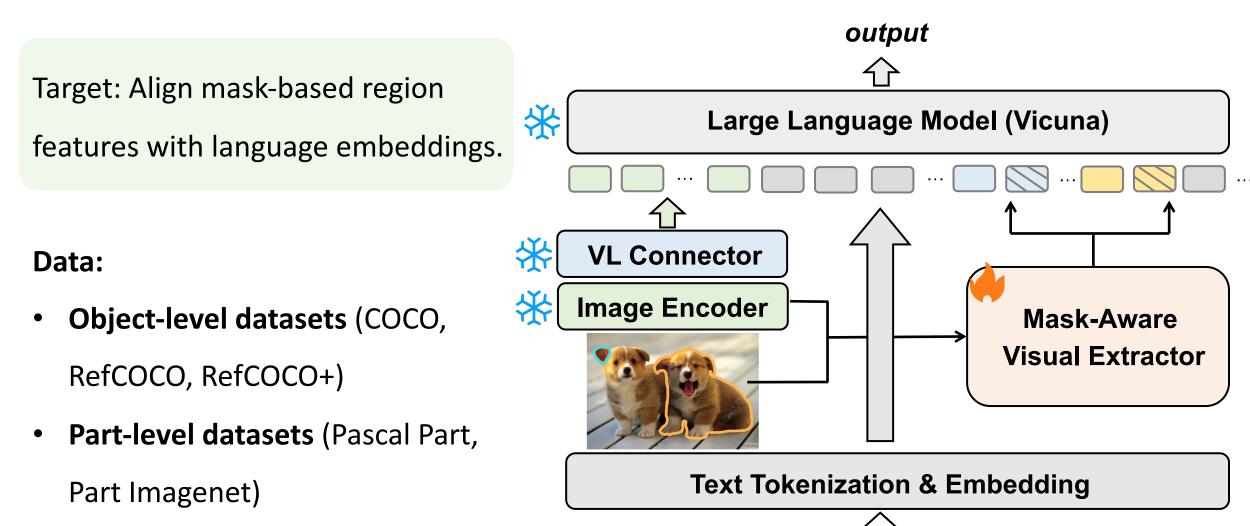
Target: Train the image-level feature and language **connector** for **image-text feature alignment**.

Data: a filtered **CC3M subset (595K)** introduced in LLaVA^[1].



[1] [Liu et al. 2023] Visual instruction tuning.

Training Stage 2: Mask-Text Alignment Pre-training



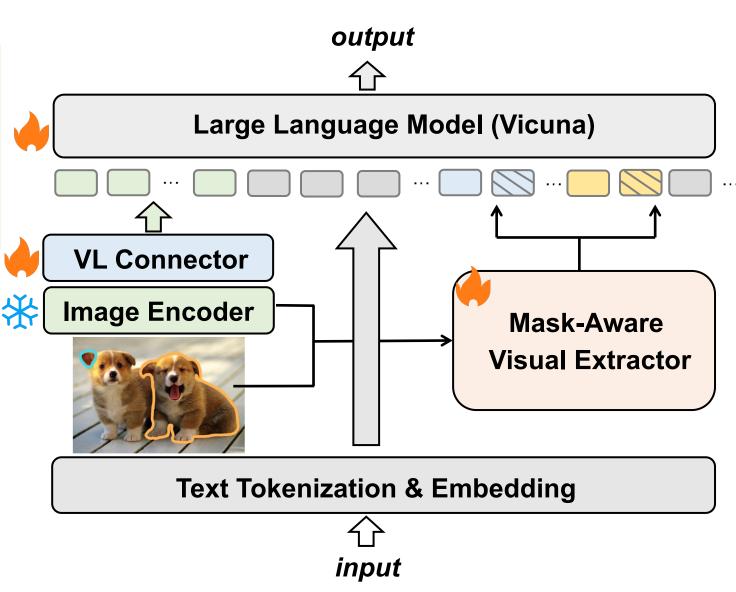
input

Training Stage 3: End-to-End Fine-tuning

Target: Extending the capability of Osprey to **follow user instructions** and tackle complex pixel-level region understanding tasks.

Data:

- Osprey-724K
- Visual Genome (VG)
- Visual Commonsense Reasoning (VCR)



Experiments

• Open-vocabulary Segmentation

Method	Туре	Cityscapes			ADE20K-150		
	- J PC	PQ	AP	mIoU	PQ	AP	mIoU
CLIP-ConvNeXt-L [43]	Mask	22.53	12.07	23.06	36.86	39.38	28.74
CLIP-Surgery-ViT-L [30]	Mask	27.24	28.35	21.92	26.55	29.70	21.42
Kosmos-2 [40]	Box	12.09	9.81	13.71	6.53	4.33	5.40
Shikra-7B [5]	Box	17.80	11.53	17.77	27.52	20.35	18.24
GPT4RoI-7B [58]	Box	34.70	21.93	36.73	36.32	26.08	25.82
Ferret-7B [54]	Mask	35.57	26.94	38.40	39.46	29.93	31.77
Osprey-7B (Ours)	Mask	50.64	29.17	49.78	41.89	41.24	29.63

• Referring object classification

Method	LV	IS	PACO			
	Semantic Similarity	Semantic IoU	Semantic Similarity	Semantic IoU		
LLaVA-1.5 [29]	48.95	19.81	42.20	14.56		
Kosmos-2 [37]	38.95	8.67	32.09	4.79		
Shikra-7B [5]	49.65	19.82	43.64	11.42		
GPT4RoI-7B [53]	51.32	11.99	48.04	12.08		
Ferret-7B [49]	63.78	36.57	58.68	25.96		
Osprey-7B (Ours)	65.24	38.19	73.06	52.72		

• Detailed region description

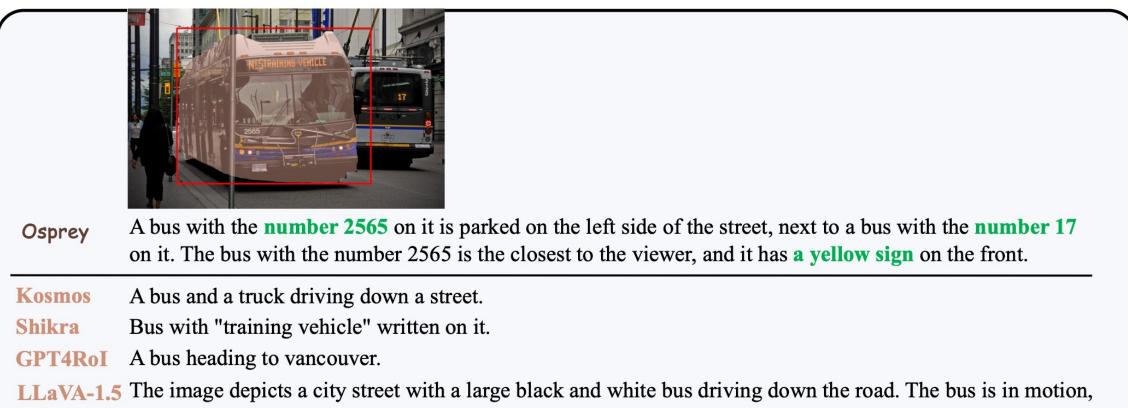
Method	Detailed Description				
LLaVA-1.5 [32]	71.11				
Kosmos-2 [40]	40.89				
Shikra-7B [5]	40.97				
GPT4RoI-7B [58]	49.97				
Osprey-7B (Ours)	77.54				
Osprey-7B* (Ours)	83.78				

Experiments

• Object Hallucination Benchmark

Sampling	Metrics	Osprey-7B*	Ferret-7B	Shikra-7B	LLaVA-1.5	InstructBLIP	MiniGPT4	MM-GPT	mPLUG-Owl
Random	Accuracy	89.47	90.24	86.90	88.73	88.57	79.67	50.10	53.97
	Precision	93.40	97.72	94.40	88.89	84.09	78.24	50.05	52.07
	Recall	84.93	83.00	79.26	88.53	95.13	82.20	100.00	99.60
	F1 Score	88.97	89.76	86.19	88.71	89.27	80.17	66.71	68.39
	Yes (%)	45.47	43.78	43.26	49.80	56.57	52.53	99.90	95.63
Popular	Accuracy	87.83	84.90	83.97	85.83	82.77	69.73	50.00	50.90
	Precision	89.94	88.24	87.55	83.91	76.27	65.86	50.00	50.46
	Recall	85.20	80.53	79.20	88.67	95.13	81.93	100.00	99.40
	F1 Score	87.50	84.21	83.16	86.22	84.66	73.02	66.67	66.94
	Yes (%)	47.37	45.63	45.23	52.83	62.37	62.20	100.00	98.57
Adversarial	Accuracy	85.33	82.36	83.10	72.10	65.17	79.20	50.00	50.67
	Precision	85.43	83.60	85.60	74.69	65.13	61.19	50.00	50.34
	Recall	85.20	80.53	79.60	88.34	95.13	82.93	100.00	99.33
	F1 Score	85.31	82.00	82.49	80.94	77.32	70.42	66.67	66.82
	Yes (%)	49.87	48.18	46.50	59.14	73.03	67.77	100.00	98.67

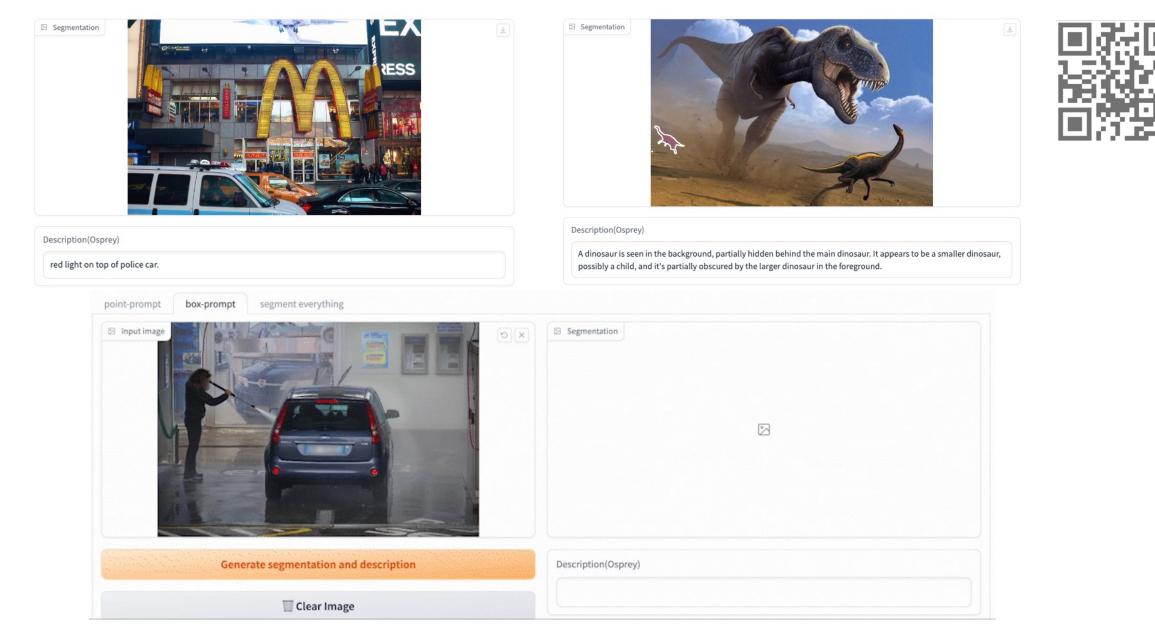
Comparison with other approaches 😜 Detailed and accurate region description



and it is passing by a bus stop where a person is waiting. The bus stop is equipped with a bus stop sign, which is visible in the scene. The street is lined with buildings, creating an urban atmosphere. There is also a traffic light present in the scene, indicating that the bus is traveling on a busy street with controlled intersections.

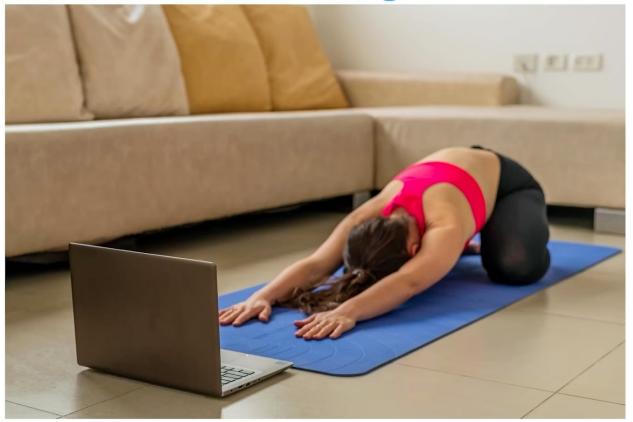
Visualizations from online Demo

Fine-grained Understanding ability



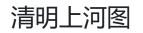
Combining with SAM

Raw Image



Video Demo

A part of Along the River During the Qingming Festival



Conclusion

- Osprey
 - a novel approach to incorporate pixel-level mask region references into language instructions.
 - seamlessly integrate with SAM to generate the semantics.
- Osprey-724K
 - Contains data of different granularities and levels of detail.
 - Robustness & Flexibility.
- And open-source!

Thanks for your attention!

Demo, code, data, model

can be found at:

https://github.com/CircleRadon/Osprey