

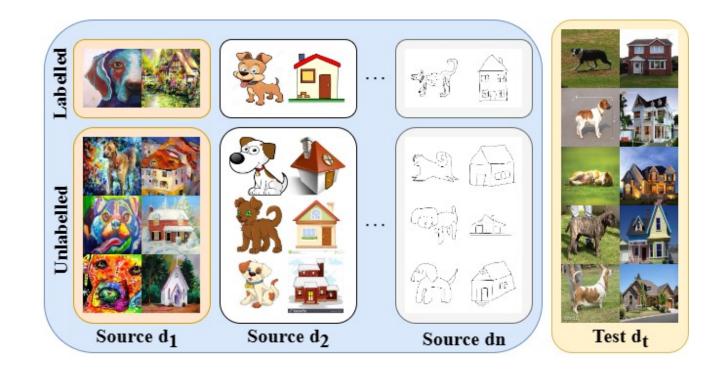
Towards Generalizing to Unseen Domains with Few Labels

Chamuditha Jayanga Galappaththige^{*1}, Sanoojan Baliah^{*1}, Malitha Gunawardhana^{1,2},

Muhammad Haris Khan¹

Mohamed Bin Zayed University of Artificial Intelligence, UAE¹, University of Auckland, New Zealand²

Semi Supervised Domain Generalization (SSDG)



- Limited labeled samples for each classes in training domains
 - 5- labels and 10 labels
- Test domain is unseen during training

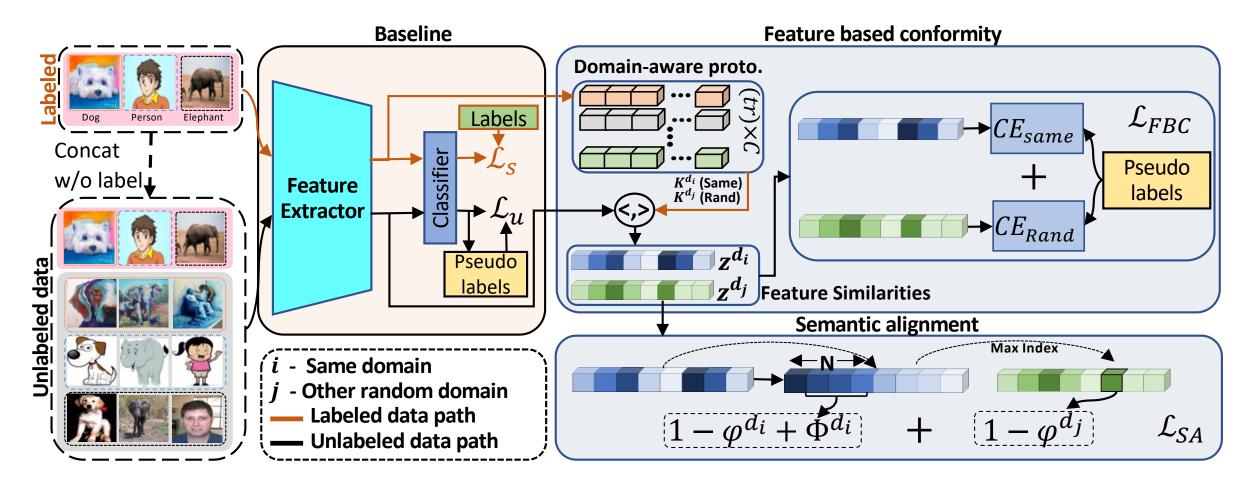
Motivation

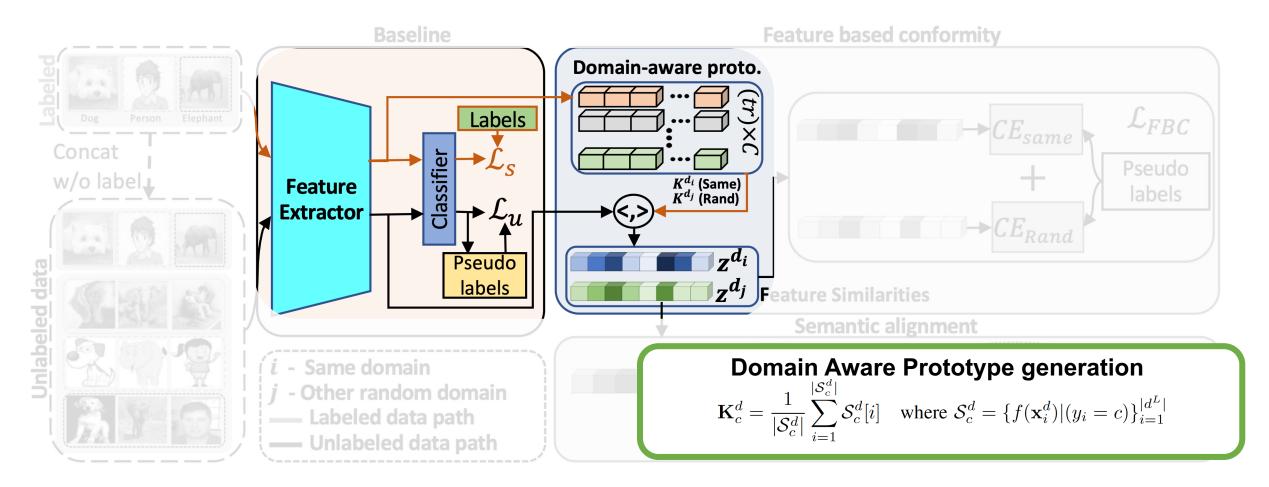
- Challenge: Limited labeled data increases overfitting risk and how to perform pseudo-labelling under different domain shifts
 Solution: Leveraging feature space to *enforce prediction consistency* by ensuring that predictions are reliable across different domains. (Feature based conformity)
- Challenge: Ensuring that the model can effectively distinguish between classes under SSDG
 Solution: Regularizing semantic layout in the feature space through domain-

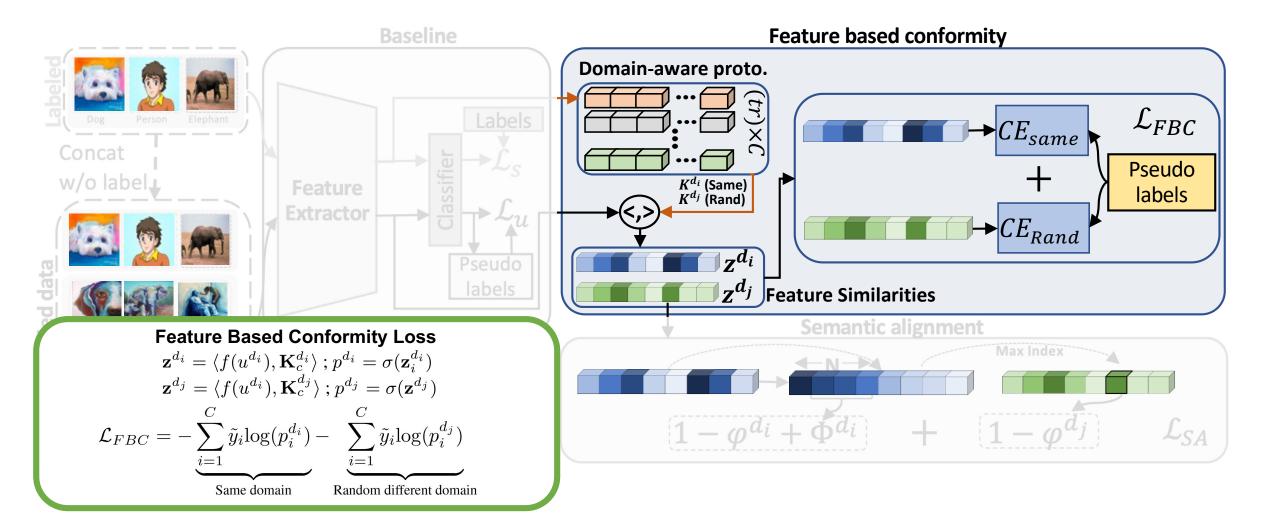
aware similarity guided cohesion and repulsion. (Semantic alignment)

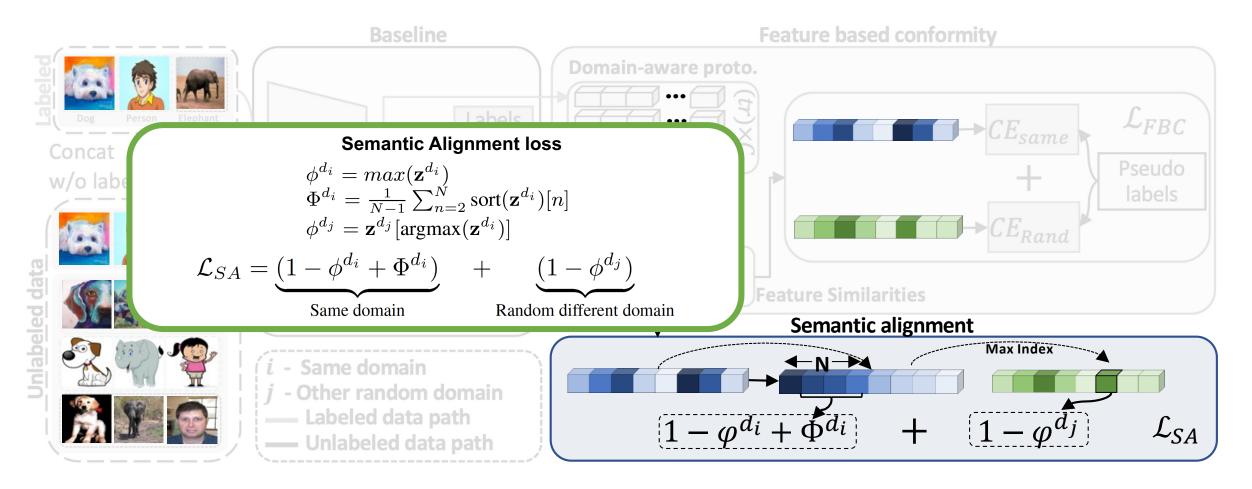
Contributions

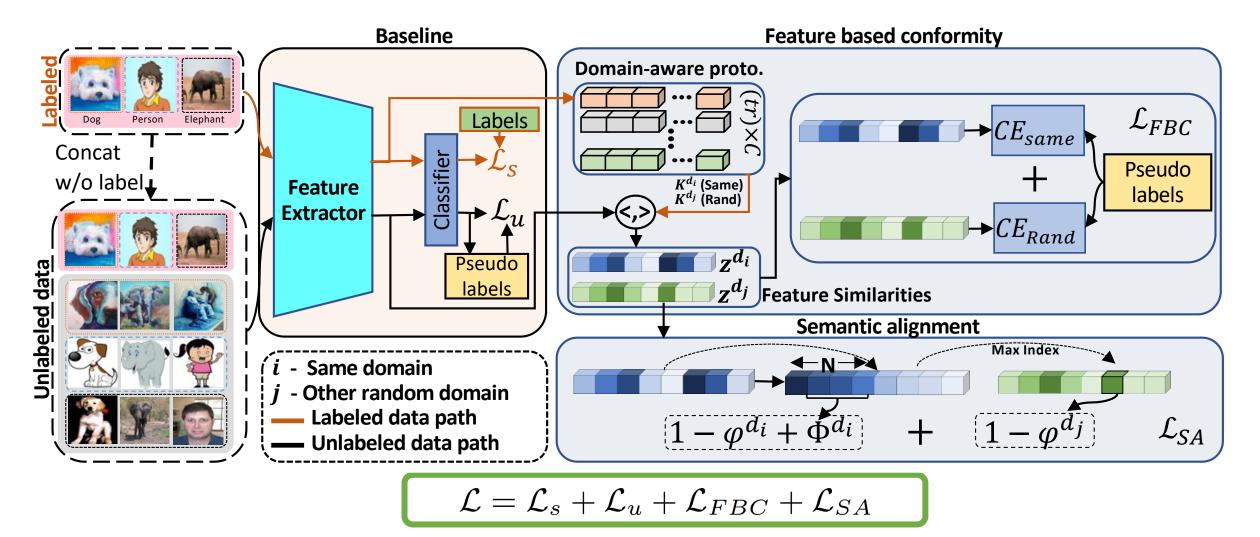
- We Study the semi-supervised domain generalization (SSDG) problem and propose a new approach, comprised of feature-based conformity and semantics alignment loss
- > Plug-and-play and without adding any learnable parameters
- Extensive experiments on five different DG datasets with four strong baselines: FixMatch, FlexMatch, FreeMatch, and StyleMatch











Results

Model	PACS	OH	VLCS	DigitsDG	TerraInc.
ERM	59.8 ± 2.5	56.7 ± 0.8	68.0 ± 0.5	29.1 ± 2.9	23.5 ± 1.4
EntMin MeanTeacher FlexMatch FreeMatch FixMatch StyleMatch	$\begin{array}{c} 64.2 \pm 2.2 \\ 61.5 \pm 1.4 \\ 72.7 \pm 1.2 \\ 74.0 \pm 2.7 \\ 76.6 \pm 1.2 \\ 79.4 \pm 0.9 \end{array}$	$57.0 \pm 0.8 \\ 55.9 \pm 0.5 \\ 53.7 \pm 0.7 \\ 56.2 \pm 0.2 \\ 57.8 \pm 0.3 \\ 59.7 \pm 0.2$	$\begin{array}{c} 66.2 \pm 0.3 \\ 66.2 \pm 0.4 \\ 56.2 \pm 2.1 \\ 61.6 \pm 1.3 \\ 70.0 \pm 2.1 \\ 73.5 \pm 0.6 \end{array}$	$\begin{array}{c} 39.3 \pm 2.8 \\ 38.8 \pm 2.9 \\ 68.9 \pm 1.2 \\ 67.5 \pm 2.4 \\ 66.4 \pm 1.4 \\ 65.9 \pm 1.9 \end{array}$	$26.6 \pm 2.6 \\ 25.0 \pm 2.8 \\ 26.4 \pm 1.8 \\ 30.1 \pm 1.2 \\ 30.5 \pm 2.2 \\ 29.9 \pm 2.8$
FlexMatch + Ours FreeMatch + Ours FixMatch + Ours StyleMatch + Ours	$75.3 \pm 1.2 \\77.3 \pm 1.7 \\78.2 \pm 1.2 \\80.5 \pm 1.1$	55.8 ± 0.4 58.0 ± 0.4 59.0 ± 0.4 60.3 \pm 0.6	58.7 ± 1.0 62.6 ± 1.3 72.2 ± 1.0 74.2 ± 0.5	$\begin{array}{c} \textbf{73.1} \pm \textbf{1.1} \\ 72.2 \pm 0.4 \\ 70.4 \pm 1.4 \\ 67.7 \pm 1.7 \end{array}$	30.9 ± 1.0 32.4 ± 2.9 34.7 ± 1.9 32.5 ± 1.8

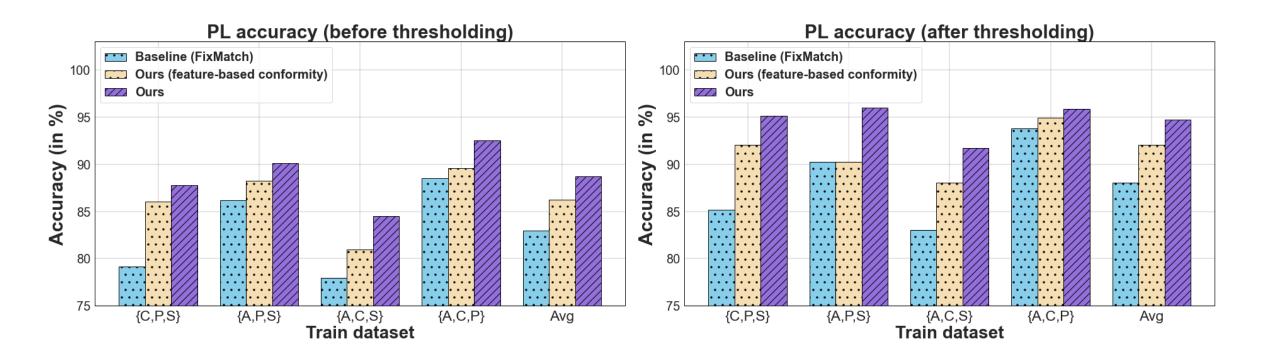
SSDG accuracy (%) with 10 labels per class. (Average over 5 independent seeds is reported.)

Results

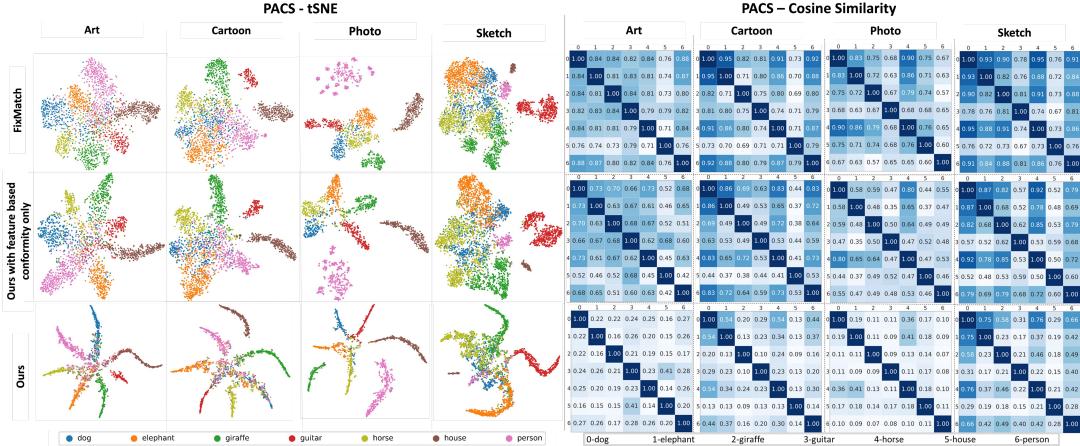
Model	PACS	ОН	VLCS	DigitsDG	TerraInc.
ERM	51.2 ± 3.0	51.7 ± 0.6	67.2 ± 1.8	22.7 ± 1.0	22.9 ± 3.0
EntMin	55.9 ± 4.1	52.7 ± 0.5	66.5 ± 1.0	28.7 ± 1.3	21.4 ± 3.5
MeanTeacher	53.3 ± 4.0	50.9 ± 0.7	66.4 ± 1.0	28.5 ± 1.4	20.9 ± 2.9
FlexMatch	65.1 ± 2.5	48.8 ± 0.3	56.0 ± 2.8	59.0 ± 2.0	24.9 ± 4.3
FreeMatch	72.8 ± 1.2	53.8 ± 0.7	60.3 ± 1.7	58.9 ± 1.4	23.5 ± 2.7
FixMatch	73.4 ± 1.3	55.1 ± 0.5	69.9 ± 0.6	56.0 ± 2.2	28.9 ± 2.3
StyleMatch	78.4 ± 1.1	56.3 ± 0.3	72.5 ± 1.5	55.7 ± 1.6	28.7 ± 2.7
FlexMatch + Ours	71.0 ± 1.4	51.3 ± 0.1	58.0 ± 2.1	$\textbf{66.2} \pm \textbf{0.6}$	28.8 ± 2.6
FreeMatch + Ours	73.7 ± 3.6	55.0 ± 0.2	62.1 ± 1.4	65.0 ± 1.5	26.5 ± 3.2
FixMatch + Ours	77.3 ± 1.1	55.8 ± 0.2	71.3 ± 0.7	62.0 ± 1.5	$\textbf{33.2} \pm \textbf{2.0}$
StyleMatch + Ours	$\textbf{79.3} \pm \textbf{0.9}$	$\textbf{56.5} \pm \textbf{0.2}$	$\textbf{72.9} \pm \textbf{0.7}$	58.7 ± 1.7	30.4 ± 3.7

SSDG accuracy (%) with 5 labels per class. (Average over 5 independent seeds is reported.)

Pseudo labelling accuracy



Feature representation analysis



PACS – Cosine Similarity

Ablation

Method	Avg Acc.
Fixmatch Baseline	73.4
+ $\mathcal{L}_{\mathrm{FBC(same-domain)}}$	76.0
+ $\mathcal{L}_{\text{FBC}(\text{different}-\text{domain})}$	74.9
+ \mathcal{L}_{FBC}	76.7
+ $\mathcal{L}_{\mathrm{SA}}$	74.8
+ \mathcal{L}_{FBC} + $\mathcal{L}_{SA(same-domain)}$	77.0
+ \mathcal{L}_{FBC} + \mathcal{L}_{SA} (Ours)	77.3

Ablation

Algorithm	RN 50	RN 101	Vit-S/32	Vit-B/32	CLIP-B/32
FixMatch[32]	$61.3_{\pm 0.4}$	$62.8_{\pm 0.2}$	$63.7_{\pm 0.5}$	$72.0_{\pm 0.4}$	$75.3_{\pm 0.6}$
FixM. +Ours	$\textbf{62.1}_{\pm 0.4}$	$\textbf{64.2}_{\pm 0.1}$	$\textbf{64.4}_{\pm 0.3}$	72.9 $_{\pm 0.3}$	$78.9_{\pm0.4}$

Algorithm	5	10	25	50	100
ERM[35]	$51.2_{\pm 1.0}$	$59.8_{\pm 2.5}$	$66.7_{\pm 2.2}$	$71.2_{\pm 1.9}$	$75.7_{\pm 1.6}$
FixMatch[32]	$72.8_{\pm 1.2}$	$76.6_{\pm 1.2}$	$77.6_{\pm 1.4}$	$78.7_{\pm 0.4}$	$79.4_{\pm 1.4}$
FixM.+Ours	77.3 $_{\pm 1.1}$	78.2 $_{\pm 1.2}$	$\textbf{79.3}_{\pm 1.8}$	$\textbf{79.6}_{\pm 1.0}$	80.4 $_{\pm 0.6}$

Conclusion

- Goal: Semi Supervised Domain Generalization
- Approach: Proposed feature-based conformity loss and Semantic Alignment loss.
- Our approach,
 - Aligns posterior distributions from different views.
 - Regularizes the semantic layout of feature space.
 - Is plug-and-play, parameter-free, and model-agnostic, allowing seamless integration into various baselines.
- Show consistent and notable gains over four recent baselines

