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Semi Supervised Domain Generalization (SSDG)

• Limited labeled samples for each classes in training domains 
• 5- labels and 10 labels

• Test domain is unseen during training
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Motivation

Ø Challenge: Limited labeled data increases overfitting risk and how to perform 
pseudo-labelling under different domain shifts
Solution: Leveraging feature space to enforce prediction consistency by 
ensuring that predictions are reliable across different domains. (Feature based 
conformity)

Ø Challenge: Ensuring that the model can effectively distinguish between classes 
under SSDG 
Solution: Regularizing semantic layout in the feature space through domain-
aware similarity guided cohesion and repulsion. (Semantic alignment)
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Contributions

Ø We Study the semi-supervised domain generalization (SSDG) problem and 
propose a new approach, comprised of feature-based conformity and 
semantics alignment loss

Ø Plug-and-play and without adding any learnable parameters

Ø Extensive experiments on five different DG datasets with four strong baselines: 
FixMatch, FlexMatch, FreeMatch, and StyleMatch
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Methodology
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Methodology

Domain Aware Prototype generation
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Results
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SSDG accuracy (%) with 10 labels per class. (Average over 5 independent seeds is reported.)
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Results

SSDG accuracy (%) with 5 labels per class. (Average over 5 independent seeds is reported.)
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Pseudo labelling accuracy
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Feature representation analysis
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Ablation
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Ablation
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Conclusion

Ø Goal: Semi Supervised Domain Generalization
Ø Approach: Proposed feature-based conformity loss and Semantic Alignment 

loss.
Ø Our approach,

• Aligns posterior distributions from different views.
• Regularizes the semantic layout of feature space.
• Is plug-and-play, parameter-free, and model-agnostic, allowing seamless 

integration into various baselines.
Ø Show consistent and notable gains over four recent baselines

Scan Me
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