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Low-precision Quantization improves Energy Efficiency

=> Int8 Multiplication consumes 18.5X less energy than FP32 Multiplication.
=> Int8 Addition consumes 30X less energy than FP32 Addition.

Less Cost in Data Centers Longer Battery-Life on Edge Devices



State-of-the-art Quantized Models have overlooked
inefficiencies

Arithmetic Operations in Quantized Models:
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SOTA Cost metrics like ACE* only accounts for multiply-accumulate operations!

* Zhang, Yichi, Zhiru Zhang, and Lukasz Lew. "Pokebnn: A binary pursuit of lightweight accuracy." Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition. 2022.



Our ACEv2 accounts for Overlooked Costs in existing cost

metrics

- ACEV2 provides a simple formula
for arithmetic operations as

addition, multiplication,

multiply-accumulate, and shift.

- ACEv2 has a correlation
coefficient of 0.991 with the
independently measured

energy consumption.
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oy ACE.|"is ACE. "5 ACE.
FP32 | 3.7 992 0.9 192 - -
FP16 | 1.1 240 0.4 96 - -
[/(,5)| i j - maw(i,j)  ca - max(i,j)
INT32| 3.1 992 0.1 32 0.13 32
INT16 - 240 - 16 0.057 12.8
INT8 | 0.2 56 0.03 8 0.024 4.8
INT4 - 12 - 4 - 1.6
INT2 - 2 - 2 - 0.4
Binary - - - 1 - -
[fGg)] i-5-max(i,g)  max(i,j)  i-loga(j)/cs |




Introducing our Low-Precision model PikeLPN

1. Start with Compact Architecture

2. Quantize All Layers
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Figure: PikeLPN Building Block



PikeLPN outperforms 1 bit state-of-the-art

Networks
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Figure: Top-1 Accuracy on ImageNet versus our ACEv2 cost of
PikeL PN compared to SOTA low-precision models



Summary of Contributions

v' Analysis of overlooked elementwise operations costs in SOTA models and cost metrics.

v'  Our hardware-agnostic cost metric, ACEv2, has 0.991 correlation with energy

consumption.

v PikeLPN family of low-precision models with up to 3.5X energy improvements.
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