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TL;DR: We propose Open3DIS addressing 3D Instance Segmentation with Open-Vocabulary queries



Motivations
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Closed-vocabulary

3D point cloud instance segmentation
(3DIS) methods require extensive
training data while limited to closed-set
categories.

A comfortable sit?

Somewhere to wash hands?

Aflag?

==

Mask3D

Input: 3D Scene

Exemplary Heatmap Output: 3D Instances

Schult et al "Mask3D: Mask Transformer for 3D instance segmentation”

An emergency exit?

Something to carry books?

A tool to open a can?

A Nike shoes?

Open-vocabulary



Motivations

(4) Open-Vocabulary 3D Instance

® 3D point cloud instance segmentation

Segmentation
(3DIS) methOdS require i ~3DMask» Query: "watch a movie" 4 3
extensive training data while limited to = | ok | '

closed-set categories.

2) Class Agnostic Instance Mask Proposals
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selecting ||2D segment| per-crop per-mask

| ltop k views)| & crop )\ CLIP features /| features

® Recent open-vocab 3DIS methods struggle
with small or ambiguous instances,
particularly those from uncommon classes

queryable features for each
3D instance mask

posed RGB-D frames

masky, .y
3) Mask-Feature Computation for Each Instance

Takmaz et al "OpenMask3D: Open-vocabulary 3D Instance Segmentation”



OpenMask3D
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OpenMask3D

Trained on closed-vocab
data, limited the capability
to segment new classes
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Our proposed Open3DIS
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Our proposed Open3DIS

3D pointcloud
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Our proposed Open3DIS

3D pointcloud

/ RGB-D images
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Our proposed Open3DIS
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Our proposed Open3DIS
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Our proposed Open3DIS

\ / Output \

point cloud

Given a 3D point cloud with the corresponding RGB-D sequences, Open3DIS generates a set of
class-agnostic 3D proposals and a featurized point cloud for open-vocabulary queries
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How to obtain 3D instance proposals?
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3D instance proposal module

2D-guide-3D Instance
Proposal Module

Class-agnostic
3D proposals
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2D Instance
Segmenter

2D instance masks @
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3D Superpoints

Original images

Super-pixels
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3D Superpoints

Original point cloud

Superpoints
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Per-frame superpoints merging

1. Use SAM to obtain a set of 2D masks of
every RGB frame

2. For each 2D mask m, we project superpoints
onto their image planes and calculate the loUs
with predicted 2D masks

3D superpoints
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Per-frame superpoints merging

2D masks Per-frame 3D proposals
1 1. Use SAM to obtain a set of 2D masks of
¢ i every RGB frame

2. For each 2D mask m, we project superpoints
onto their image planes and calculate the loUs
with predicted 2D masks

3. We merge all superpoints having sufficient
overlap to create an initial 3D proposal of mask
m
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3D instance proposal module

2D instance mask

1 f"

Per-frame
Superpoint Merging

Augmented
3D proposals

[1,T/2

©*

glomerative
Clustering

1. We merge point cloud regions from

different frames in a bottom-up
manner.
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3D instance proposal module

2D instance masks
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Augmented
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@ Agglomerative _ _
Clustering 1. We merge point cloud regions from

different frames in a bottom-up
manner.

2. Agglomerative clustering is chosen to
combine proposals from pairs of
frames.
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3D instance proposal module

2D instance masks
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Superpoint Merging

Augmented
3D proposals

@ Agglomerative _ _
Clustering 1. We merge point cloud regions from

different frames in a bottom-up
manner.

2. Agglomerative clustering is chosen to
combine proposals from pairs of
frames.
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How to obtain featurized point cloud?
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Point-wise feature extraction

RGB-D images

———————————————————

-------------------

Class-agnostic
3D proposals

Point-wise Feature
Extraction

4,[

Featurized
point cloud

]
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Point-wise feature extraction

3D proposals

Pointwise Feature Extraction

. |View \

[View 2

CLIP
Encoder

Average
over views

Pointwise
feature
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Experiments

DSLR Image

Tmme-resolution Laser Scan

Datasets:

e ScanNet++ and ScanNet200

* ARKitScenes

e S3DIS
* Replica
Metrics:

* AP (Average Precision)

* AR (Average Recall)

25



Quantitative Results: ScanNet200

Method Setting 3D Proposal AP AP50 AP25 AP head APcom APtaj]
ISBNet [36] 245 320 37.6 38.6 20.5 125
Fully-sup
Mask3D [42] 26.9 36.2 41.4 39.8 21.7 17.9
OpenScene [37] + DBScan [10]1‘ None 2.8 7.8 18.6 2.9 3.1 2.6
OpenScene [37] + Mask3D [42] Mask3D [42] 11.7 15.2 17.8 13.4 11.6 9.9
SAM3D' [57] Open-vocab None 6.1 14.2 21.3 7.0 6.2 4.6
OVIR-3D' [33] None 13.0 249 32.3 14.4 12.7 11.7
OpenMask3D [45] Mask3D [42] 154 199 23.1 17.1 14.1 14.9
Ours (only 2D) None 18.2 26.1 31.4 18.9 16.5 19.2
Ours (only 3D) Open-vocab  ISBNet [36] 18.6  23.1 27.3 24.7 16.9 13:3
Ours (2D and 3D) ISBNet [36] 23.7 294 32.8 27.8 21.2 21.8

Our method surpasses previous OV-3DIS approaches by a large margin, having
competitive performance with fully-supervised methods
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Quantitative Results: Replica & S3DIS

Method 3D Proposal AP AP5y APos Method B8/N4 B6/N6
APE  APY, APE AP
OpenScene + Mask3D Mask3D 109 156 17.3 i g 0 L e
OpenMask3D Mask3D  13.1 184 242 PLZg‘[S] [8] e el e
OVIR-3D ' None 11.1 205 275 Lowis3D[7] 587  13.8 518 158
Ours None 18.1 26.7 30.5 Ours 60.8 26.3 50.0 29.0

Replica S3DIS



Quantitative Results: ScanNet++

Method AP AP50 AP25 AR AR50 AR25 NOTE
ISBNet [50] (3D) 6.2 101 162 109 169  25.2 pretrained Scannet200
SAM3D [78] 72 142 294

SAM-guided Graph Cut [18] 129 253 436

Segment3D [26] 120 227 37.8

SAI3D [82] (SAM 17.1 31.1 49.5

Ours (SAM)
Ours (SAM)

18.5
20.7

33.5
38.6

44.3
47.1

35.6
40.8

63.7
75.7

82.7
91.8

100 frames per scene
all frames per scene
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Qualitative Results on ARKitScenes

Picture of a Horse
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Qualitative Results on ARKitScenes

Blue letter M
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Qualitative Results on ARKitScenes
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Qualitative Results on ScanNet200

Comfortable
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Qualitative Results on ScanNet200
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Qualitative Results on ScanNet200

34



uaIitative Results on ScanNet++

SAM Class-agnostic
3D Instance Segmentation
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Qualitative Results on ScanNet++

SAM Class-agnostic 3D Instance Segmentation
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Summary

We introduce Open3DIS to address the open-vocabulary 3D
instance segmentation task with a novel strategy to generate
high-quality 3D proposals from pretrained 2D model.

Our approach achieves state-of-the-art performance on 5
different datasets.

Future research on adapting Open3DIS for other 3D
representation such as 3D Gaussian Splatting would be an
interesting exploration.
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