

S2MAE: A Spatial-Spectral Pretraining Foundation Model for Spectral Remote Sensing Data

Xuyang Li 1,2Danfeng Hong 1,2Jocelyn Chanussot 3

¹ Aerospace Information Research Institute, Chinese Academy of Sciences ² School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences ³ Univ. Grenoble Alpes, Inria, CNRS, Grenoble INP, LJK

Introduction

- Remote sensing (RS) data, gathered by satellites or aircraft, capture electromagnetic reflections and emissions from Earth's surface.
- The volume of data expands with the increasing number of satellite launches.

Multispectral Images: Landsat, Sentinel-2 ...

Hong, Danfeng, et al. "SpectralGPT: Spectral remote sensing foundation model." IEEE Transactions on Pattern Analysis and Machine Intelligence (2024).

Introduction

Spectral Imagery

- Each surface material has a unique spectral signature.
- Multi-spectral Imagery (MSI) contain 10+ bands of wavelength ranges.
- Hyper-spectral Imagery (HSI) contains spectrum in many contiguous wavebands.
- The narrower the range of wavelength in a band, the finer its spectral resolution would be.

https://www.mapmyops.com/imaging-spectroscopy-exploring-hyperspectral-imaging

- RS Imagery vs. Natural Imagery
 - Distance & Resolutions
 - Subject & Background
 - Multi-Channels & RGB Channels

- RS Spectral Imagery vs. RS RGB Imagery
 - Multi-Channels & 3 Channels
 - Rich Spectral Information
 - Datatype

- Spectral Imagery vs. Video Data
 - No movements in spectral imagery.
 - No subjects or background in remote sensing imagery.
 - Details are crucial for remote sensing analysis.

The feature of remote sensing big data is well-suited for developing **Pretraining Foundation Models (PFMs)**.

Most RS PFMs focus on RS RGB imagery.

- 3 Channels
- easy to transfer methods from computer vision field
- Few studies focus on PFMs in RS spectral imagery.
 - SatMAE

Temporal RGB Data

Spectral Data

Cong, Yezhen, et al. "Satmae: Pre-training transformers for temporal and multi-spectral satellite imagery." Advances in Neural Information Processing Systems 35 (2022): 197-211.

SEATTLE, WA JUNE 17-21, 2024

The Limitations of SatMAE

SatMAE

- Inappropriate interaction between groups
- Limited band combinations in grouping
- Extra inductive bias

Can MAE exploit local spectral continuity in spectral data with variable band counts to learn strong representations and reduce inductive bias?

3D Masked Autoencoders (MAE)

Integrating local spectral continuity and spatial invariance via small tensor cubes.

Spatial-Spectral Masked Autoencoders (S2MAE)

3D Spatial-Spectral Masked Image Modeling

Method	Pretrained Dataset	Acc. (%)		
ResNet50[12]	ImageNet-1k	96.72		
SeCo[27]	SeCo	97.23		
ViT[8]	From scratch.	98.73		
ViT[8]	ImageNet-22k	98.91		
SatMAE[4]	fMoW-S2	99.09		
S2MAE	fMoW-S2	99.16		
S2MAE*	fMoW-S2+BigEarthNet	99.19		

Single-Label Classification

Multi-Label Classification

Method	Pretrained Dataset	mAP		
ResNet50[12]	ImageNet-1k	80.06		
ViT[8]	From scratch.	80.15		
SeCo[27]	SeCo	82.82		
ViT[8]	ImageNet-22k	84.67		
SatMAE[4]	fMoW-S2	84.93		
S2MAE	fMoW-S2	85.59		
S2MAE*	fMoW-S2+BigEarthNet	87.41		

EuroSAT 10 Classes Scene Classification BigEarthNet 19 Classes Land Cover Classification

The results underscore the superior generalization capabilities of S2MAE.

Change Detection

Method	Pretrained Dataset	Precision	Recall	F1
ResNet50[12]	ImageNet-1k	65.42	38.86	48.10
SeCo[27]	SeCo	57.71	49.23	49.82
ViT[8]	From scratch.	56.71	47.52	51.71
ViT[8]	ImageNet-22k	52.09	52.37	52.23
SatMAE[4]	fMoW-S2	55.18	50.54	52.76
S2MAE	fMoW-S2	53.89	55.87	53.28
S2MAE*	fMoW-S2+BigEarthNet	54.90	56.81	54.26

Reconstruction Visualization

Original	Mask 50%	SatMAE	S2MAE	Mask 75%	SatMAE	S2MAE	Mask 90%	SatMAE	S2MAE	Mask 95%	SatMAE	S2MAE
										n al a		
						0						
					MITA	MITT		MIR			it.	hille

Ablation Stuides

Conclusion

• Summary

- We introduced S2MAE, an MAE extension for spectral RS imagery pretraining.
- S2MAE incorporates a 3D transformer architecture, employing a random masking strategy and integrating learnable spectral-spatial embeddings.

Key Observations

- For highly redundant spectral images, a high masking ratio (90%) during pretraining is very important.
- The masking strategy needs to align with the properties of the spectral images.
- Progressive pretraining on different datasets can enhance the model's performance.

Future Works

SEATTLE, WA JUNE 17-21, 2024

- How to capture longer spectral sequences?
 - S2MAE utilizes a 3D masking strategy to only capture the local spectral consistency.
 - Focusing on the reconstruction of information in the spectral sequence dimension may yield richer representations.

Focus on self-supervised methods using multimodal RS data.

• Fusing data from various satellites and aircraft is crucial for building a foundational model in the remote sensing field.

