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Learning Structure-from-Motion
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Elements of Multi-View Geometry

Projections

Views

Scene points
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Model Architecture: Feature Types

• Goal: A neural network model operating on the geometric elements of SfM.
• Organize all geometric entities (camera views, projections, . . . ) in vectors / matrices.

• Rows & columns ⇐⇒ camera views & scene points, respectively.

• Let each geometric entity carry information in a feature vector.

View features

Scene point featuresGlobal features

Projection features
(vector-valued sparse “matrix”)

Example: Projection of scene point 4 in 2nd view

2

4
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“Connecting the dots”
• Sparse patterns =⇒ Use graph neural networks (GNN).

• Possibility of outliers =⇒ Use attention (we use GATv2).
• A single fully connected graph (i.e. self-attention) would have drawbacks:

• Quadratic complexity.

• Ignores feature type differences.

• Proposal: Aggregate features via cross-attention from one feature type to another.
• (Bi-)linear complexity.
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Model Architecture: Overview

UpdateViewFeat UpdateScenePointFeat

“Projection features”: Initialized with
point tracks (2D coordinates)

UpdateGlobalFeat

UpdateProjFeat

Camera pose regression Scene point coordinate regression
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Model Architecture: Overview

UpdateViewFeat UpdateScenePointFeat

“Projection features”: Initialized with
point tracks (2D coordinates)

UpdateGlobalFeat

UpdateProjFeat

Camera pose regression Scene point coordinate regression

“Resection” “Intersection”
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Implementation Details

• Loss Function: Average reprojection error.

• Model trained on 12 scenes (SfM reconstructions, outlier-free correspondences).
• Will present initial experiments with outliers as well.

“Some Cathedral in Barcelona” “Alcatraz Courtyard” “Smolny Cathedral St Petersburg”
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Results: Reconstruction of Novel Test Scenes

Ours (GASFM) DPESFM[a]
Scene Inference +BA Inference +BA Colmap[b]
Alcatraz Courtyard 36.01 0.81 92.37 0.92 0.81
Alcatraz Water Tower 87.67 0.88 2831.94 10.16 0.55
Drinking Fountain Somewhere in Zurich 219.75 0.31 234.90 6.73 0.31
Nijo Castle Gate 61.41 0.88 68.19 0.89 0.73
Porta San Donato Bologna 52.15 0.76 84.46 0.75 0.75
Round Church Cambridge 29.80 0.39 59.54 1.49 0.39
Smolny Cathedral St Petersburg 85.38 0.81 87.81 0.81 0.81
Some Cathedral in Barcelona 125.68 0.89 687.83 16.77 0.89
Sri Veeramakaliamman Singapore 83.50 2.13 166.68 9.30 0.71
Yueh Hai Ching Temple Singapore 25.60 0.65 51.35 0.73 0.65
Average 80.69 0.85 436.51 4.86 0.66

Table 1: Avg. reprojection error (px) on 10 novel test scenes, with and without BA,
compared to DPESFM[a] and Colmap[b].

[a]Moran et al., Deep Permutation Equivariant Structure from Motion, ICCV (2021).
[b]Schönberger et al., Structure-from-Motion Revisited, CVPR (2016).
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Execution Time

Time (seconds)
Scene #Views #Points Inference BA Colmap Speedup
Alcatraz Courtyard 133 23 674 0.24 45.54 286.0 6.3×
Alcatraz Water Tower 172 14 828 0.13 31.11 130.0 4.2×
Drinking Fountain Somewhere In Zurich 14 5 302 0.06 1.98 16.0 7.8×
Nijo Castle Gate 19 7 348 0.09 3.97 21.0 5.2×
Porta San Donato Bologna 141 25 490 0.18 27.02 170.0 6.3×
Round Church Cambridge 92 84 643 0.43 56.47 229.0 4.0×
Smolny Cathedral St Petersburg 131 51 115 0.49 86.09 516.0 6.0×
Some Cathedral In Barcelona 177 30 367 0.24 47.05 451.0 9.5×
Sri Veeramakaliamman Singapore 157 130 013 0.63 115.80 583.0 5.0×
Yueh Hai Ching Temple Singapore 43 13 774 0.08 8.54 106.0 12.3×

Table 2: Runtime per scene compared to Colmap.
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Initial Results: Training / Evaluation With Outliers

Ours (GASFM) DPESFM
Scene Corrupted subset(s): Train Train+Test Train Train+Test
Alcatraz Courtyard 47.74 52.99 85.81 94.24
Alcatraz Water Tower 35.96 37.89 72.84 83.55
Drinking Fountain Somewhere in Zurich 52.08 46.65 1012.14 1453.31
Nijo Castle Gate 46.48 62.52 72.99 126.18
Porta San Donato Bologna 53.12 65.08 88.02 94.72
Round Church Cambridge 36.09 48.63 63.72 90.63
Smolny Cathedral St Petersburg 47.28 59.52 91.03 98.05
Some Cathedral in Barcelona 109.86 123.75 397.75 462.28
Sri Veeramakaliamman Singapore 63.60 70.90 169.63 146.98
Yueh Hai Ching Temple Singapore 26.83 36.69 51.41 57.59
Average 51.91 60.46 210.53 270.75

Table 3: Training with artificial outliers: Avg. reprojection error (px) for inference on 10 novel test scenes (no BA).
With or w/o outliers for test scenes as well. (N.B.: In loss fcn. & eval. metric, targets remain uncorrupted.)
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Future Work

• Consider many more training scenes.

• Train and evaluate performance on real outlier matches.

• Incorporate equivariance (break dependence on arbitrary global reference frame).
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Thank You!

/
https://github.com/lucasbrynte/gasfm

/
https://arxiv.org/abs/2308.15984

Poster #90
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