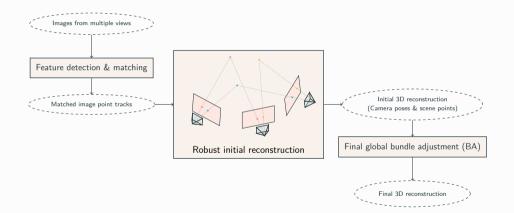


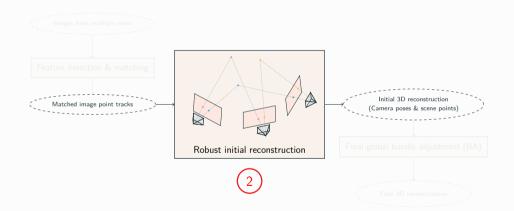
Learning Structure-from-Motion with Graph Attention Networks

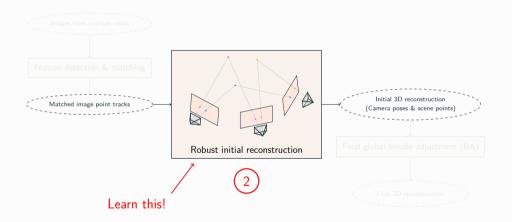
Lucas Brynte

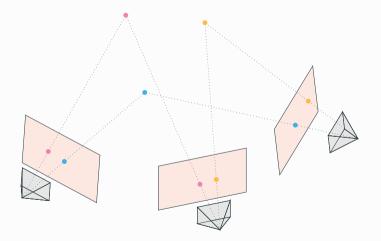
Joint work with José Pedro Iglesias, Carl Olsson, and Fredrik Kahl

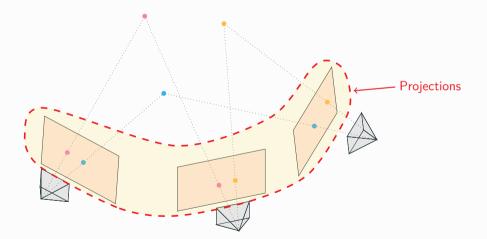
Chalmers University of Technology

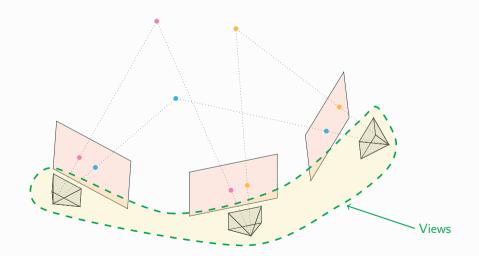


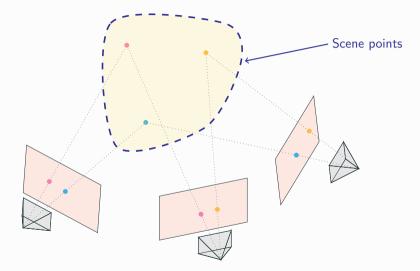




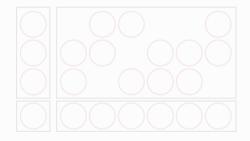




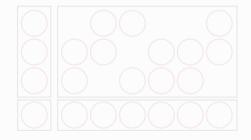




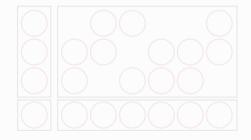
- Goal: A neural network model operating on the geometric elements of SfM.
- Organize all geometric entities (camera views, projections, ...) in vectors / matrices.
 - Rows & columns ⇔ camera views & scene points, respectively.
- Let each geometric entity carry information in a feature vector.



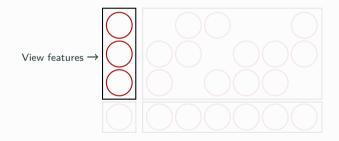
- Goal: A neural network model operating on the geometric elements of SfM.
- Organize all geometric entities (camera views, projections, ...) in vectors / matrices.
 - Rows & columns \iff camera views & scene points, respectively.
- Let each geometric entity carry information in a feature vector.



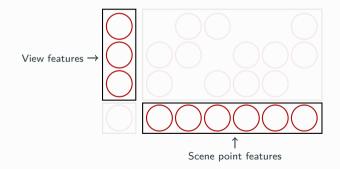
- Goal: A neural network model operating on the geometric elements of SfM.
- Organize all geometric entities (camera views, projections, ...) in vectors / matrices.
 - Rows & columns \iff camera views & scene points, respectively.
- Let each geometric entity carry information in a feature vector.



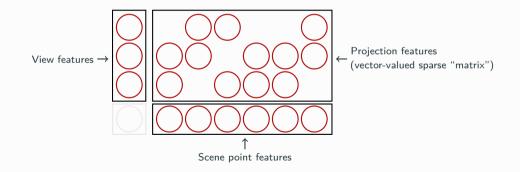
- Goal: A neural network model operating on the geometric elements of SfM.
- Organize all geometric entities (camera views, projections, ...) in vectors / matrices.
 - Rows & columns \iff camera views & scene points, respectively.
- Let each geometric entity carry information in a feature vector.



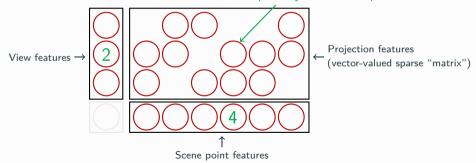
- Goal: A neural network model operating on the geometric elements of SfM.
- Organize all geometric entities (camera views, projections, ...) in vectors / matrices.
 - Rows & columns \iff camera views & scene points, respectively.
- Let each geometric entity carry information in a feature vector.



- Goal: A neural network model operating on the geometric elements of SfM.
- Organize all geometric entities (camera views, projections, ...) in vectors / matrices.
 - Rows & columns \iff camera views & scene points, respectively.
- Let each geometric entity carry information in a feature vector.

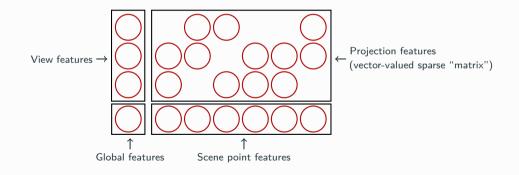


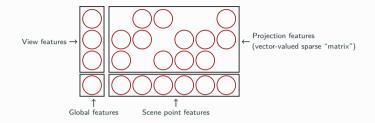
- Goal: A neural network model operating on the geometric elements of SfM.
- Organize all geometric entities (camera views, projections, ...) in vectors / matrices.
 - Rows & columns \iff camera views & scene points, respectively.
- Let each geometric entity carry information in a feature vector.



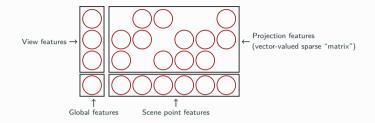
Example: Projection of scene point 4 in 2nd view

- Goal: A neural network model operating on the geometric elements of SfM.
- Organize all geometric entities (camera views, projections, ...) in vectors / matrices.
 - Rows & columns \iff camera views & scene points, respectively.
- Let each geometric entity carry information in a feature vector.

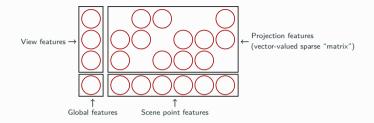




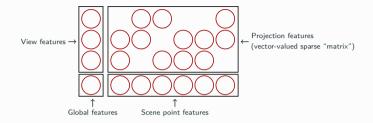
- Sparse patterns ⇒ Use graph neural networks (GNN).
- Possibility of outliers \implies Use attention (we use GATv2)
- A single fully connected graph (i.e. self-attention) would have drawbacks:
 - Quadratic complexity.
 - Ignores feature type differences.
- Proposal: Aggregate features via cross-attention from one feature type to another.
 - (Bi-)linear complexity.



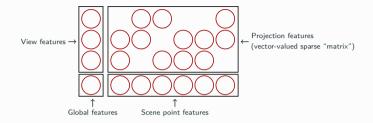
- Sparse patterns \implies Use graph neural networks (GNN).
- Possibility of outliers => Use attention (we use GATv2).
- A single fully connected graph (i.e. self-attention) would have drawbacks:
 - Quadratic complexity.
 - Ignores feature type differences.
- Proposal: Aggregate features via cross-attention from one feature type to another.
 - (Bi-)linear complexity.



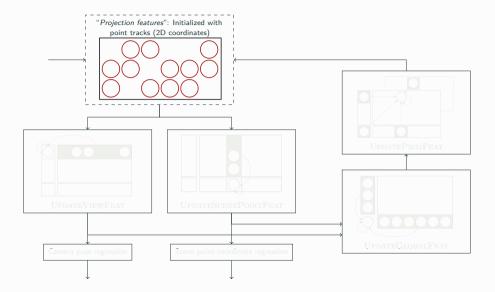
- Sparse patterns \implies Use graph neural networks (GNN).
- Possibility of outliers \implies Use attention (we use GATv2).
- A single fully connected graph (i.e. self-attention) would have drawbacks:
 - Quadratic complexity.
 - Ignores feature type differences.
- Proposal: Aggregate features via cross-attention from one feature type to another.
 - (Bi-)linear complexity.

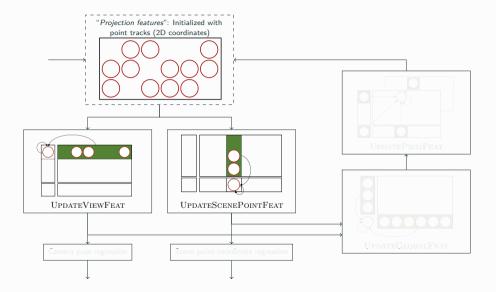


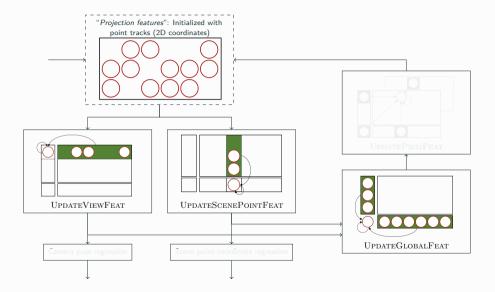
- Sparse patterns \implies Use graph neural networks (GNN).
- Possibility of outliers \implies Use attention (we use GATv2).
- A single fully connected graph (i.e. self-attention) would have drawbacks:
 - Quadratic complexity.
 - Ignores feature type differences.
- Proposal: Aggregate features via cross-attention from one feature type to another.
 - (Bi-)linear complexity.

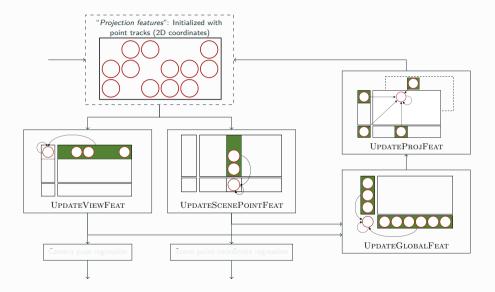


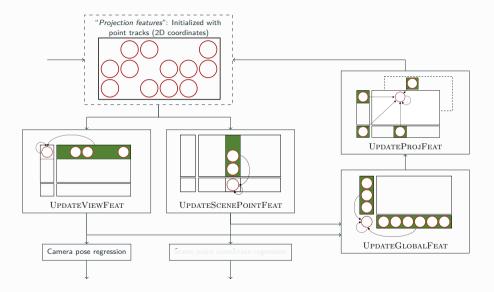
- Sparse patterns \implies Use graph neural networks (GNN).
- Possibility of outliers \implies Use attention (we use GATv2).
- A single fully connected graph (i.e. self-attention) would have drawbacks:
 - Quadratic complexity.
 - Ignores feature type differences.
- Proposal: Aggregate features via cross-attention from one feature type to another.
 - (Bi-)linear complexity.

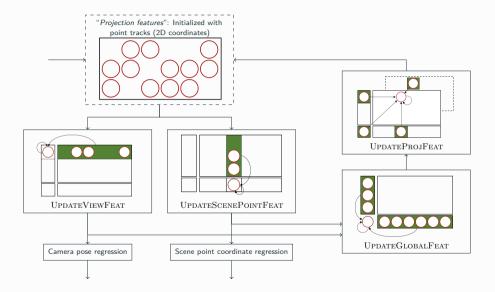


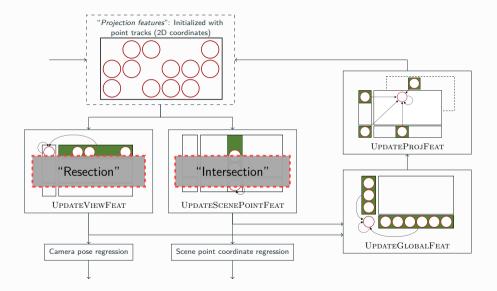












• Loss Function: Average reprojection error.

- Model trained on 12 scenes (SfM reconstructions, outlier-free correspondences).
 - Will present initial experiments with outliers as well.

- Loss Function: Average reprojection error.
- Model trained on 12 scenes (SfM reconstructions, outlier-free correspondences).
 - Will present initial experiments with outliers as well.

"Some Cathedral in Barcelona"

"Alcatraz Courtyard"

"Smolny Cathedral St Petersburg"

- Loss Function: Average reprojection error.
- Model trained on 12 scenes (SfM reconstructions, outlier-free correspondences).
 - Will present initial experiments with outliers as well.

"Some Cathedral in Barcelona"

"Alcatraz Courtyard"

"Smolny Cathedral St Petersburg"

	Ours (GA	SFM)	DPESF		
Scene	Inference	+BA	Inference	+BA	Colmap[b]
Alcatraz Courtyard	36.01	0.81	92.37	0.92	0.81
Alcatraz Water Tower	87.67	0.88	2831.94	10.16	0.55
Drinking Fountain Somewhere in Zurich	219.75	0.31	234.90	6.73	0.31
Nijo Castle Gate	61.41	0.88	68.19	0.89	0.73
Porta San Donato Bologna	52.15	0.76	84.46	0.75	0.75
Round Church Cambridge	29.80	0.39	59.54	1.49	0.39
Smolny Cathedral St Petersburg	85.38	0.81	87.81	0.81	0.81
Some Cathedral in Barcelona	125.68	0.89	687.83	16.77	0.89
Sri Veeramakaliamman Singapore	83.50	2.13	166.68	9.30	0.71
Yueh Hai Ching Temple Singapore	25.60	0.65	51.35	0.73	0.65
Average	80.69	0.85	436.51	4.86	0.66

Table 1:

Avg. reprojection error (px) on 10 novel test scenes, with and without BA, compared to DPESFM[a] and Colmap[b].

Lucas Brynte

[[]a] Moran et al., Deep Permutation Equivariant Structure from Motion, ICCV (2021).

[[]b]Schönberger et al., Structure-from-Motion Revisited, CVPR (2016).

			Time (seconds)			
Scene	#Views	#Points	Inference	BA	Colmap	Speedup
Alcatraz Courtyard	133	23 674	0.24	45.54	286.0	6.3 imes
Alcatraz Water Tower	172	14 828	0.13	31.11	130.0	4.2 imes
Drinking Fountain Somewhere In Zurich	14	5 302	0.06	1.98	16.0	7.8 imes
Nijo Castle Gate	19	7 348	0.09	3.97	21.0	5.2 imes
Porta San Donato Bologna	141	25 490	0.18	27.02	170.0	6.3 imes
Round Church Cambridge	92	84 643	0.43	56.47	229.0	4.0 imes
Smolny Cathedral St Petersburg	131	51 115	0.49	86.09	516.0	6.0 imes
Some Cathedral In Barcelona	177	30 367	0.24	47.05	451.0	9.5 imes
Sri Veeramakaliamman Singapore	157	130 013	0.63	115.80	583.0	5.0 imes
Yueh Hai Ching Temple Singapore	43	13 774	0.08	8.54	106.0	12.3 imes

 Table 2:
 Runtime per scene compared to Colmap.

		Ours	(GASFM)	DPESFM	
Scene	Corrupted subset(s):	Train	Train + Test	Train	Train + Test
Alcatraz Courtyard		47.74	52.99	85.81	94.24
Alcatraz Water Tower		35.96	37.89	72.84	83.55
Drinking Fountain Somewhere in Zurich		52.08	46.65	1012.14	1453.31
Nijo Castle Gate		46.48	62.52	72.99	126.18
Porta San Donato Bologn	а	53.12	65.08	88.02	94.72
Round Church Cambridge		36.09	48.63	63.72	90.63
Smolny Cathedral St Pete	ersburg	47.28	59.52	91.03	98.05
Some Cathedral in Barcel	ona	109.86	123.75	397.75	462.28
Sri Veeramakaliamman Si	ngapore	63.60	70.90	169.63	146.98
Yueh Hai Ching Temple S	ingapore	26.83	36.69	51.41	57.59
Average		51.91	60.46	210.53	270.75

Table 3:

Training with artificial outliers: Avg. reprojection error (px) for inference on 10 novel test scenes (no BA). With or w/o outliers for test scenes as well. (N.B.: In loss fcn. & eval. metric, targets remain uncorrupted.)

• Consider many more training scenes.

- Train and evaluate performance on real outlier matches.
- Incorporate equivariance (break dependence on arbitrary global reference frame).

- Consider many more training scenes.
- Train and evaluate performance on real outlier matches.
- Incorporate equivariance (break dependence on arbitrary global reference frame).

- Consider many more training scenes.
- Train and evaluate performance on real outlier matches.
- Incorporate equivariance (break dependence on arbitrary global reference frame).

THANK YOU!

https://github.com/lucasbrynte/gasfm

https://arxiv.org/abs/2308.15984

Poster #90