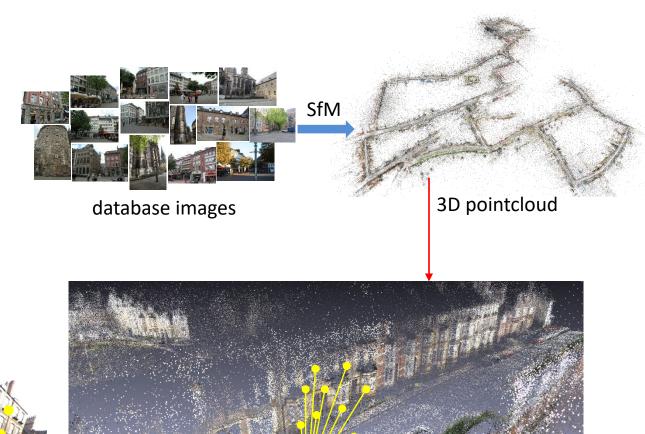


Learning to Produce Semi-dense Correspondences for Visual Localization

Khang Truong Giang¹, Soohwan Song², Sungho Jo¹ ¹KAIST, ²Dongguk University

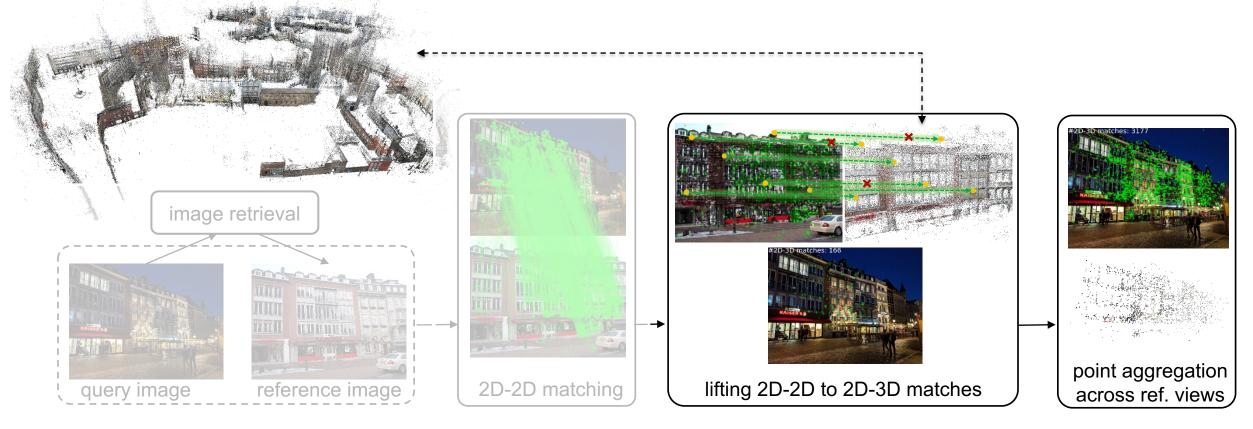

Background

Visual Localization

Estimate camera poses from input images and a known 3D representation of a scene

Most common approach: 2D-3D Feature Matching (FM)

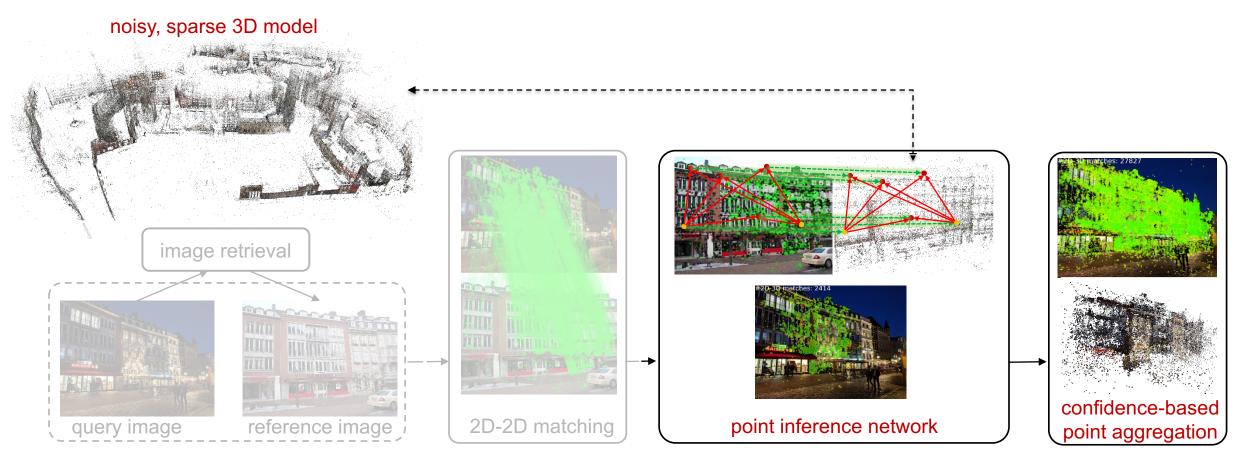
- establish correspondences between 2D image pixels and 3D scene coordinates
- find camera poses using a RANSAC-based PnP algorithm



query image

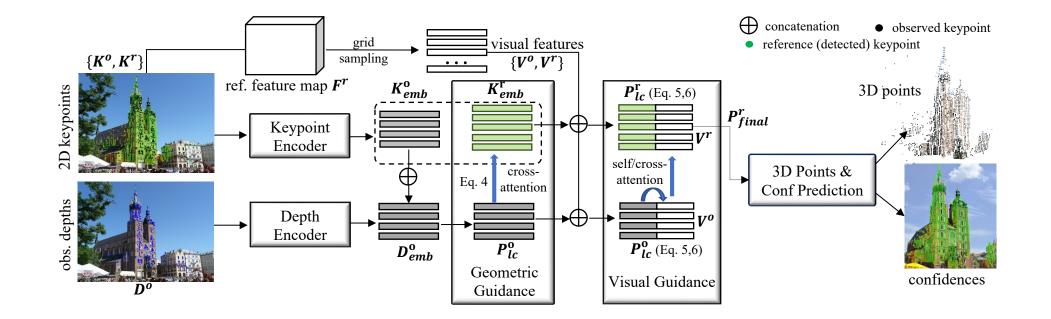
Motivation

Existing Challenges of FM-based methods


a robust FM-based 3D model built from SfM

Existing SOTA pipeline, HLoc

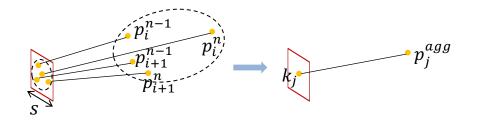
Motivation

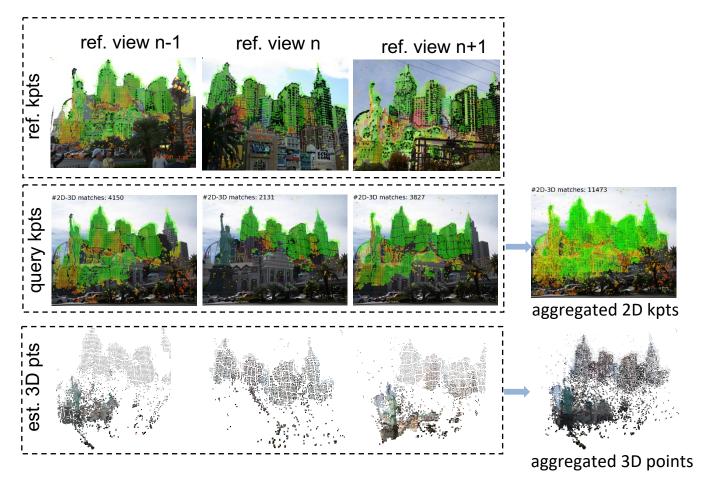

Our approach

DeViLoc

Proposed Method

Point Inference Network (PIN)




Proposed Method

Confidence-based Point Aggregation

 $p_j^{agg} = \frac{\sum_{i,n} I(Q_s(k_i^n) = k_j) c_i^n p_i^n}{\sum_{i,n} I(Q_s(k_i^n) = k_j) c_i^n}$

 p_j^{agg} : merged 3D point for keypoint k_j $Q_s(k_i^n) = round\left(\frac{k_i^n}{s}\right) * s$: quantization function k_i^n : keypoint *i* associated with reference image *n* p_i^n : 3D point *i* corresponding to keypoint k_i^r c_i^n : confidence value for 3D point p_i^n

Challenging benchmarks

	Methods	Aachen Day-Night		RobotCar-Seasons		Extended CMU-Seasons		
	wienious	Day	Night	Day-all	Night-all	Urban	Suburban	Park
D	ESAC [7]	42.6 / 59.6 / 75.5	6.1 / 10.2 / 18.4	-	-	-	-	-
	AS [48]	85.3/92.2/97.9	39.8 / 49.0 / 64.3	50.9 / 80.2 / 96.6	6.9 / 15.6 / 31.7	81.0 / 87.3 / 92.4	62.6 / 70.9 / 81.0	45.5 / 51.6 / 62.0
	D2Net [20]	84.8/92.6/97.5	84.7 / 90.8 / 96.9	54.5 / 80.0 / 95.3	20.4 / 40.1 / 55.0	94.0/97.7/99.1	93.0/95.7/98.3	89.2/93.2/95.0
	S2DNet [23]	84.5 / 90.3 / 95.3	74.5 / 82.7 / 94.9	53.9 / 80.6 / 95.8	14.5 / 40.2 / 69.7	-	-	-
	HLoc[SP] [18, 42]	80.5 / 87.4 / 94.2	68.4 / 77.6 / 88.8	53.1 / 79.1 / 95.5	7.2 / 17.4 / 34.4	89.5/94.2/97.9	76.5 / 82.7 / 92.7	57.4 / 64.4 / 80.4
0	PixLoc [44]	64.3 / 69.3 / 77.4	51.0 / 55.1 / 67.3	52.7 / 77.5 / 93.9	12.0 / 20.7 / 45.4	88.3 / 90.4 / 93.7	79.6/81.1/85.2	61.0 / 62.5 / 69.4
	HLoc[SP+SG]	89.6 / 95.4 / 98.8	86.7 / 93.9 / 100.	56.9 / 81.7 / 98.1	33.3 / 65.9 / 88.8	95.5 / 98.6 / 99.3	90.9 / 94.2 / 97.1	85.7 / 89.0 / 91.6
	LBR [65]	88.3 / 95.6 / 98.8	84.7 / 93.9 / 100.	56.7 / 81.7 / 98.2	24.9 / 62.3 / 86.1	-	-	-
	HLoc+PixLoc	84.7 / 94.2 / 98.8	81.6 / 93.9 / 100.	56.9 / 82.0 / 98.1	34.9 / 67.7 / 89.5	96.9 / 98.9 / 99.3	93.3/95.4/97.1	87.0 / 89.5 / 91.6
	HLoc[TopicFM][24]	88.8 / 94.7 / 97.9	86.7 / 92.9 / 100.	_	-	_	-	-
0	NeuMap [58]	80.8 / 90.9 / 95.6	48.0 / 67.3 / 87.8	-	-	7		-
SD	DeViLoc (Ours)	87.4 / 94.8 / 98.2	87.8 / 93.9 / 100.	56.9 / 81.8 / 98.0	31.3 / 68.9 / 92.4	95.7 / 98.4 / 99.2	97.1 / 98.3 / 99.4	92.1 / 95.1 / 96.3

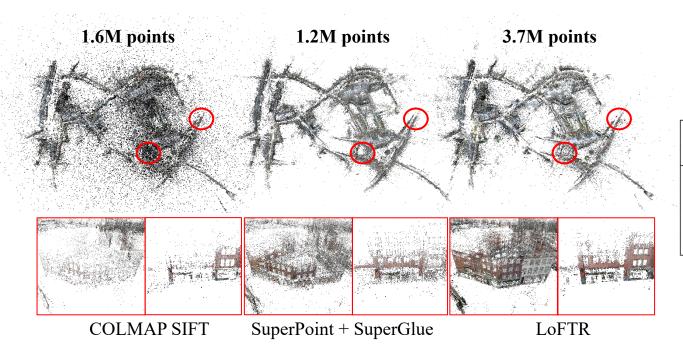
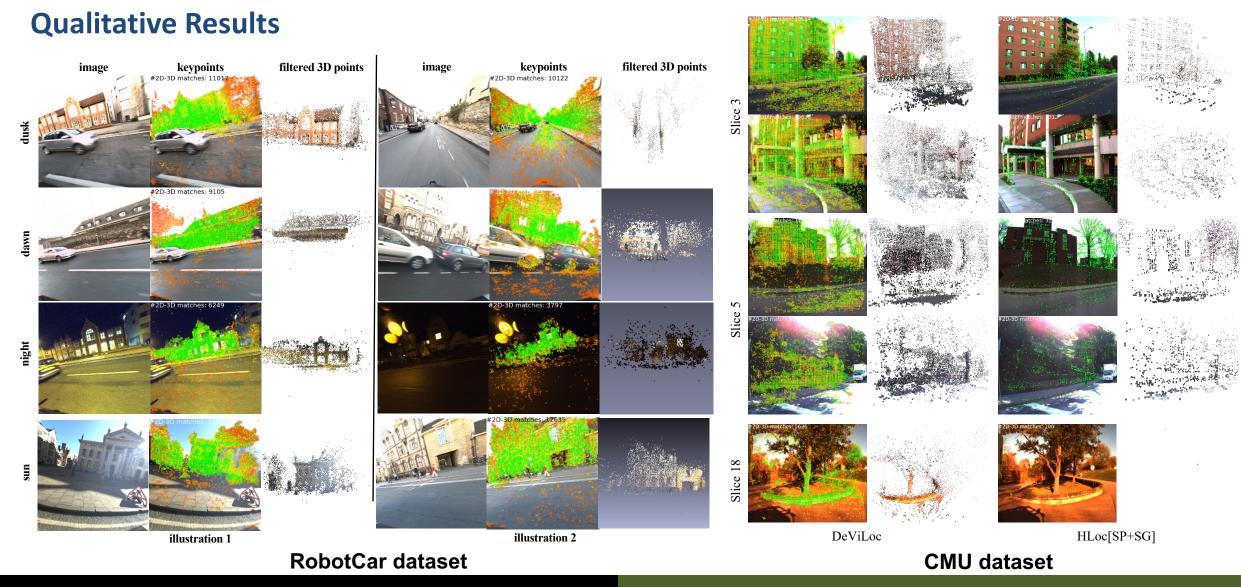



Illustration of pose estimation on CMU-Seasons


Experiments

Robustness with noisy/sparse 3D pointcloud inputs

Models	Day	Night			
WIUUCIS	$(0.25m,2^{o}) / (0.5m,5^{o}) / (5.0m,10^{o})$				
DeViLoc[half-SIFT]	87.5 / 94.1 / 97.9	86.7 / <u>92.9</u> / 100.			
DeViLoc[SIFT]	87.4 / 94.8 / 98.2	87.8 / 93.9 / 100.			
DeViLoc[SP+SG]	87.3 / 95.3 / 98.3	88.8 / <u>92.9</u> / 100.			
DeViLoc[LoFTR]	87.9 / 94.7 / 98.2	88.8 / 92.9 / 100.			

Experiments

Thanks for listening!