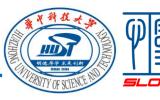


AnomalyNCD: Towards Novel Anomaly Class Discovery in Industrial Scenarios

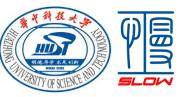
Ziming Huang*, Xurui Li*, Haotian Liu*, Feng Xue, Yuzhe Wang, Yu Zhou

Table of Contents



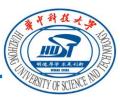
- > Research Background
- > Related Works
- > Towards Novel Anomaly Class Discovery in Industrial Scenarios

Table of Contents



- > Research Background
- > Related Works
- > Towards Novel Anomaly Class Discovery in Industrial Scenarios

Characteristics of Industrial Anomaly Data



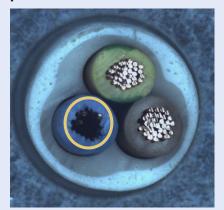
"industrial defects", "industrial anomalies" denote defects in industrial products.

Visual Defects (Additive Defects)

Visually distinct from normal conditions, such as stains, cracks, etc.

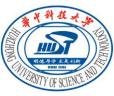
Logical Defects (Subtractive Defects)

Partial loss of local information on normal products



Based on normal industrial products, parts that violate the rules of normal products are determined as defects (anomalies).

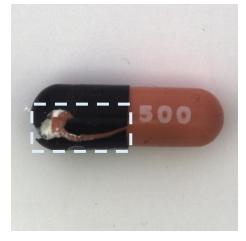
Characteristics of Industrial Anomaly Data

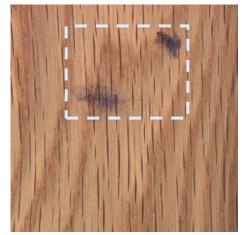


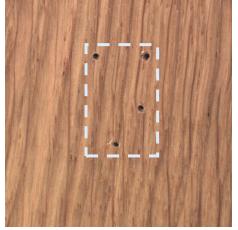
Visual Randomness

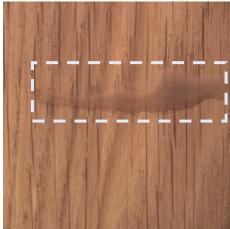
Shape Randomness

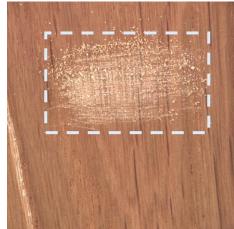
Location Randomness



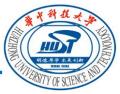




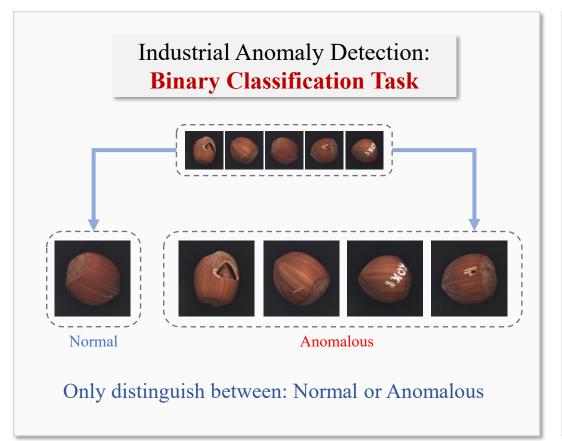


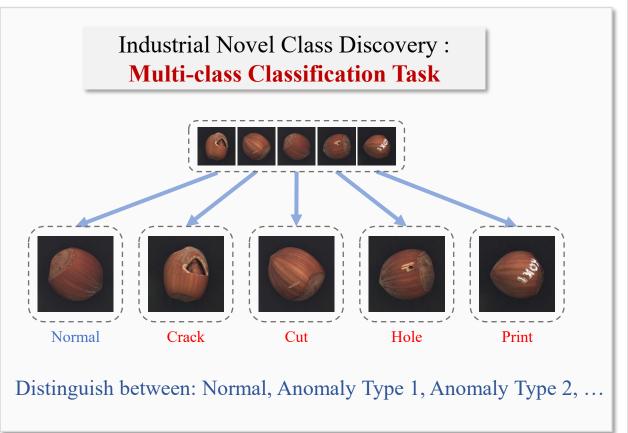


Industrial Anomaly Detection and Novel Class Discovery



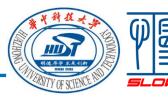
Research Tasks





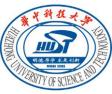
Supervised defect classification methods have become relatively mature and are widely applied.

Table of Contents



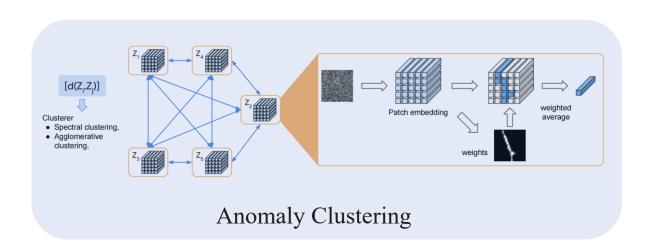
- > Research Background
- > Related Works
- > Towards Novel Anomaly Class Discovery in Industrial Scenarios

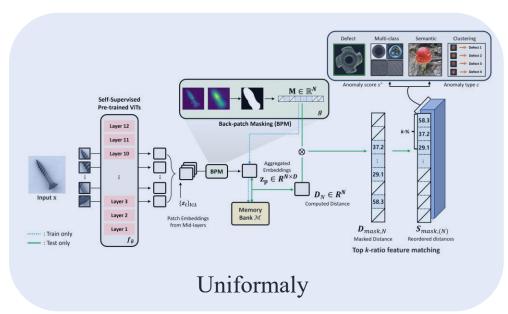
Anomaly Clustering Methods



Industrial Defect Clustering Method Based on Anomaly Region Focusing,

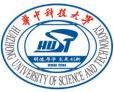
such as Anomaly Clustering, Uniformaly, etc.



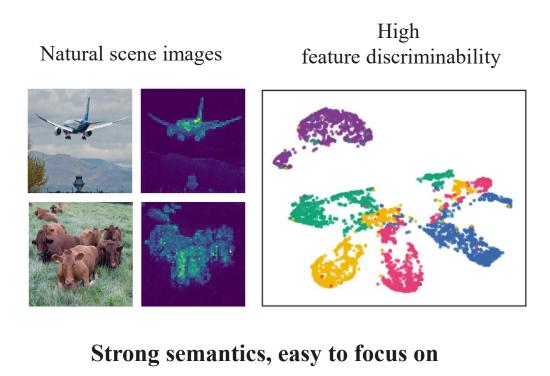


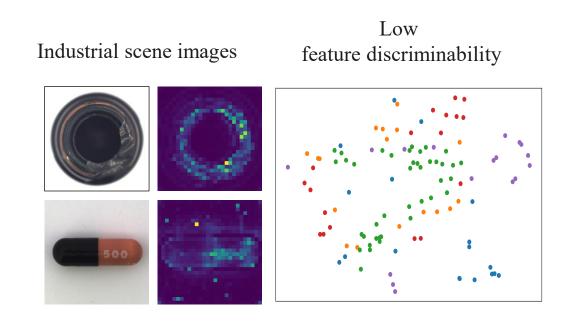
Model the features of abnormal regions and perform clustering to achieve classification.

Limitations of existing methods



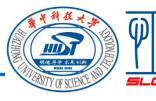
Challenges in anomaly clustering methods: low feature discriminability



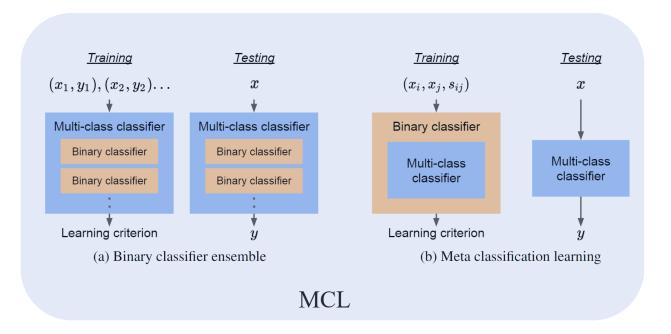


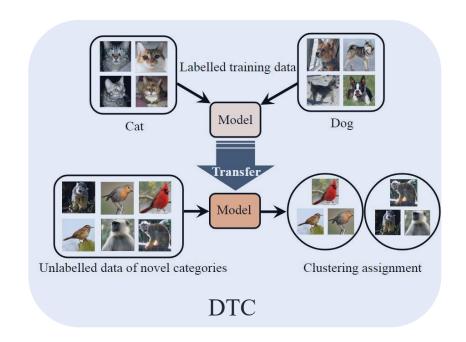
Weak semantics, difficult to focus on

Novel Class Discovery



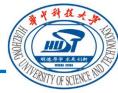
Two-stage knowledge transfer methods based on shared networks, such as CCN,MCL,DTC, etc.



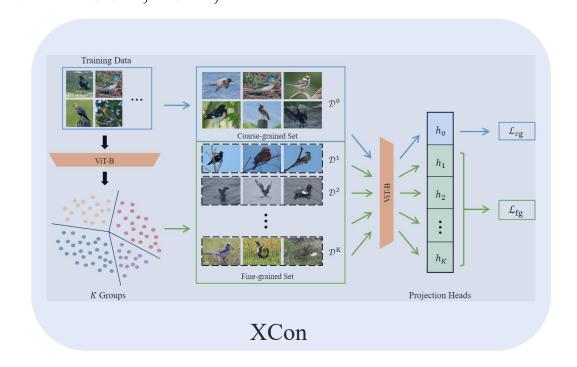


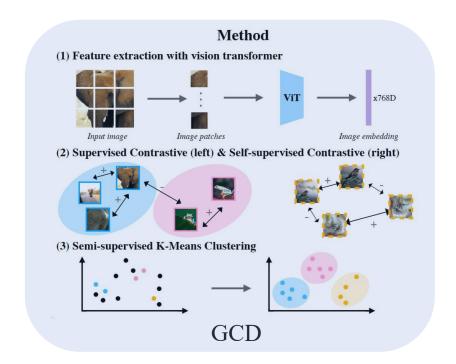
Leverage labeled data to learn classification prior knowledge, thereby assisting in the classification of unlabeled data.

Novel Class Discovery



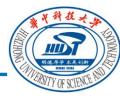
Clustering methods based on self-supervised contrastive learning of image features, such as GCD,XCon,etc.



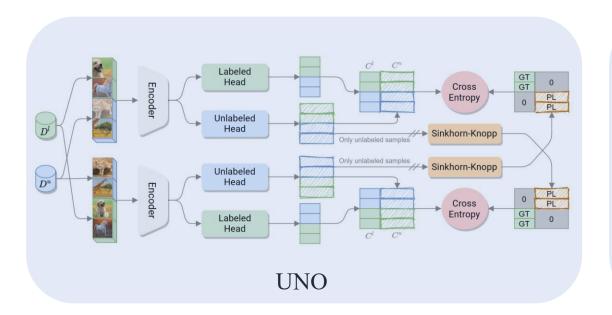


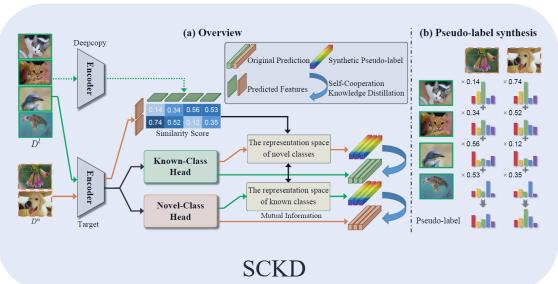
Utilize the differences between image features for contrastive learning and clustering to achieve classification.

Novel Class Discovery



Classification methods based on pseudo-label generation and parameterized classifiers, such as UNO, SCKD, BYOP, etc.





Generate pseudo-labels for unlabeled data to train parameterized classifiers to achieve classification.

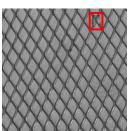
Limitations of existing methods

Challenges in novel category discovery methods: difficulty in focusing on local minor defects.

Natural scene images

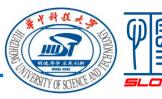
The target object is centrally positioned with a large area.

Industrial scene images



The target defect is randomly positioned with a small area.

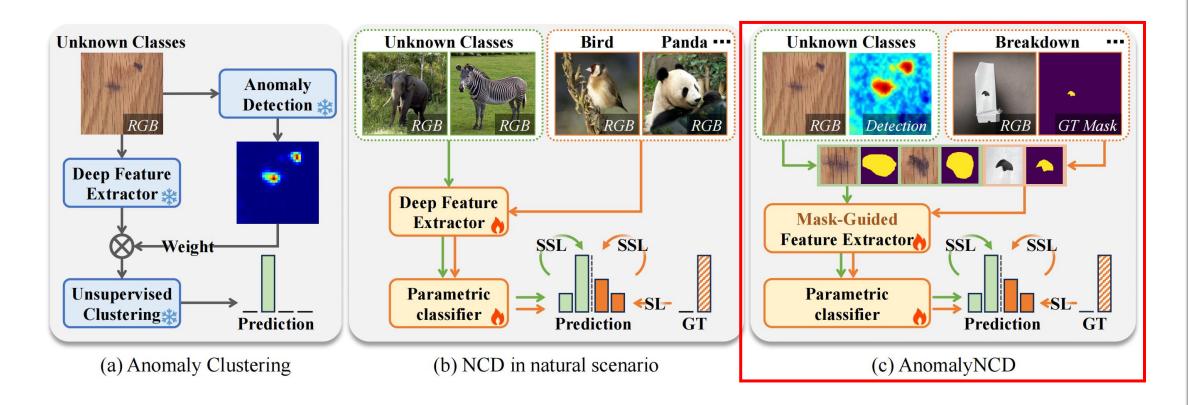
Table of Contents



- > Research Background
- > Related Works
- > Towards Novel Anomaly Class Discovery in Industrial Scenarios

Research motivation

Motivation



Adaptive iterative optimization, focusing on abnormal regions for classification.

Method

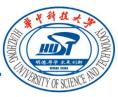
Framework

Train

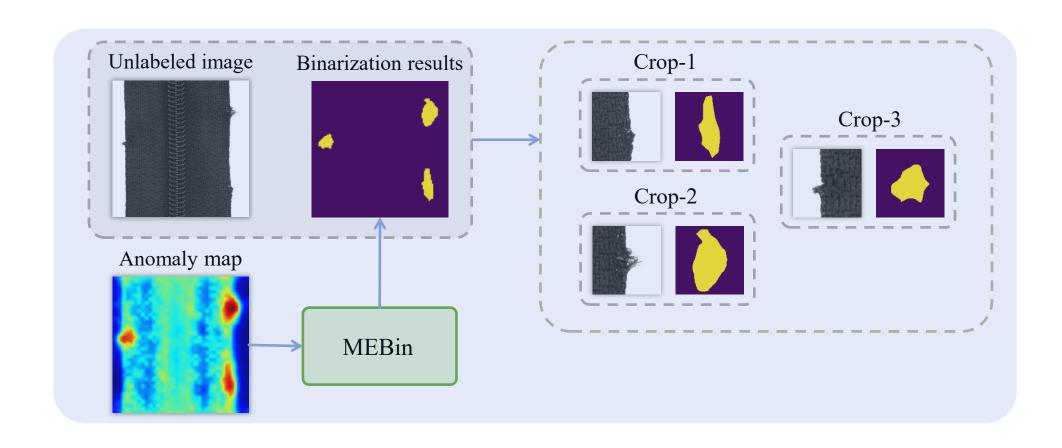
Binarization Region extraction Representation learning

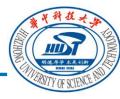
Mask-Guided Contrastive Representation Learning View-1 MEBin-Unlabeled Labeled Teacher network Pseudo labels True label Mask-Guided classifier \rightarrow Softmax τ_t ViT ViT Layer 1 crop View-1 & View-2 View-1 View-2 Layer 2 Aug Share weight $\mathcal{L}_{ ext{CE}}^{ullet}$ Layer 3 Student network View-2 Layer 4 classifier \rightarrow Softmax τ_s Unlabeled Sub-images View-2 View-1 View-1 View-2 Layer 12 Inference Aug Data Augmentation MG Region classifier → Softmax $\mathcal{L}_{\mathrm{CE}}$ Cross-Entropy loss Merging ViT classifier Infer Sub-image Predictions MEBin Main Element Binarization Prediction Softmax τ Softmax function with temperature τ Self-Attention Mask-Guided Attention [CLS] token Patch token

Input test images, perform adaptive binarization and defect region extraction, and enhance feature discriminability of different defect categories via self-supervised training. Input the test images into the above-trained model again.



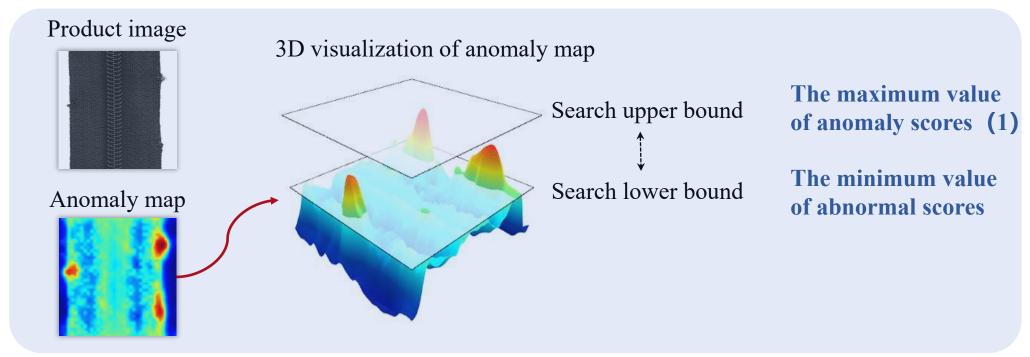
MEBin — Overview



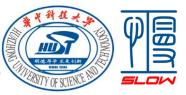


MEBin—Setting threshold search range

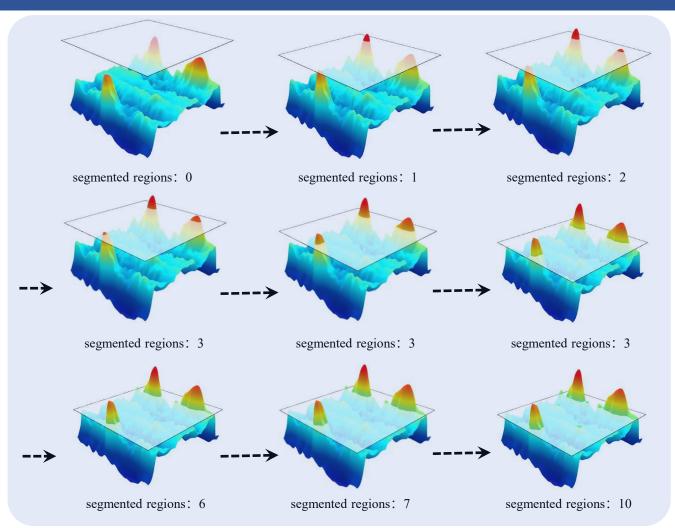
Given a batch of anomaly maps to be binarized, calculate the maximum and minimum values of the anomaly scores for the images in this batch, and adaptively determine the threshold search interval based on these extreme values.



Method



MEBin—Traverse the threshold search interval and count the number of segmented regions



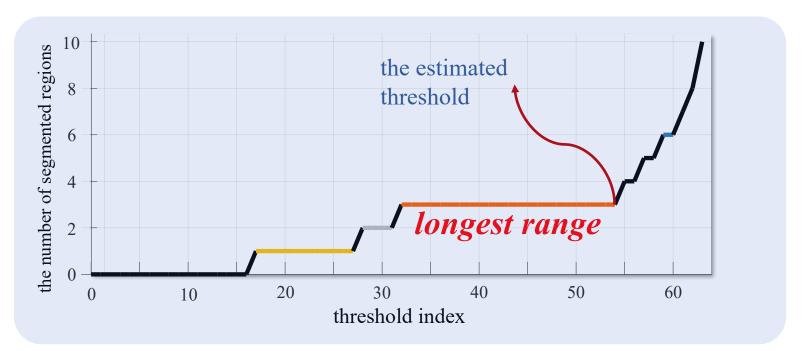
Defect regions start to segment — the number of segmented regions increases

Defect regions are gradually and completely segmented — the number of segmented regions stabilizes

Noise appears in normal regions — the number of segmented regions changes

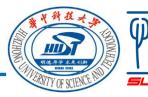
MEBin—Calculate the stable interval and adaptively estimate the threshold

Stable interval: A threshold interval where the number of segmented regions remains constant and exceeds a predefined minimum length. Calculate all stable intervals and use the minimum threshold of the longest stable interval as the estimated threshold.

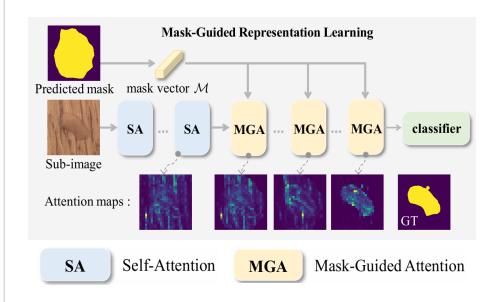


By selecting the 'minimum' threshold within the longest stable interval, we aim to reduce false negatives (missed detections).

Method



MGViT



ViT: Self Attention

$$Attn = \operatorname{softmax} \left(\operatorname{concat}(\mathbf{Q}_{l-1}^{\operatorname{cls}} \mathbf{K}_{l-1}^{\top}, \mathbf{Q}_{l-1}^{\operatorname{patch}} \mathbf{K}_{l-1}^{\top}) \right) \mathbf{V}_{l-1}$$

MGViT: Mask-Guided Attention

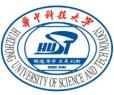
$$Attn = \operatorname{softmax}(\operatorname{concat}[\mathbf{Q}_{l-1}^{\operatorname{cls}} \mathbf{K}_{l-1}^{\top} + \overline{\mathcal{M}}, \mathbf{Q}_{l-1}^{\operatorname{patch}} \mathbf{K}_{l-1}^{\top})) \mathbf{V}_{l-1}$$

Leverage mask constraints on the [CLS] token to guide the model to focus exclusively on patches containing $\overline{\mathcal{M}}(i) = \begin{cases} 0, & \text{if } \mathcal{M}(i) > 0.5 \\ -\infty, & \text{otherwise} \end{cases}$ For patches without defects, the defects for classification.

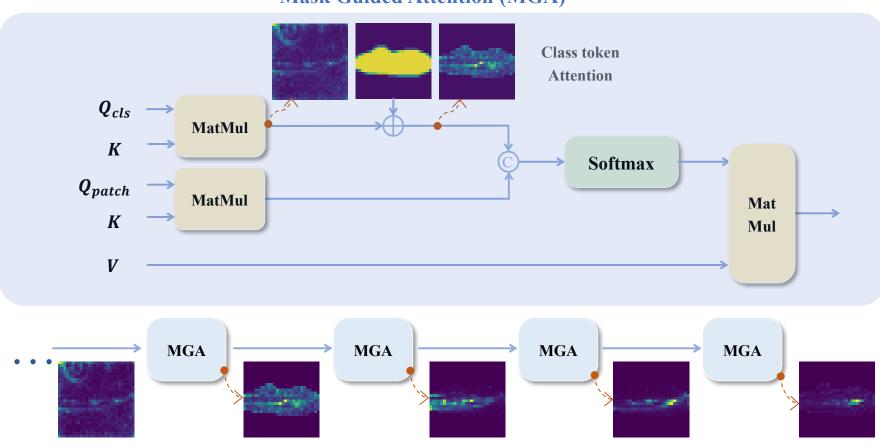
Patches containing defects

For patches without defects, the corresponding attention is set to 0.

Leverage mask constraints to guide the model to focus on defects and extract features from defective regions.

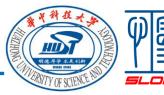


MGViT

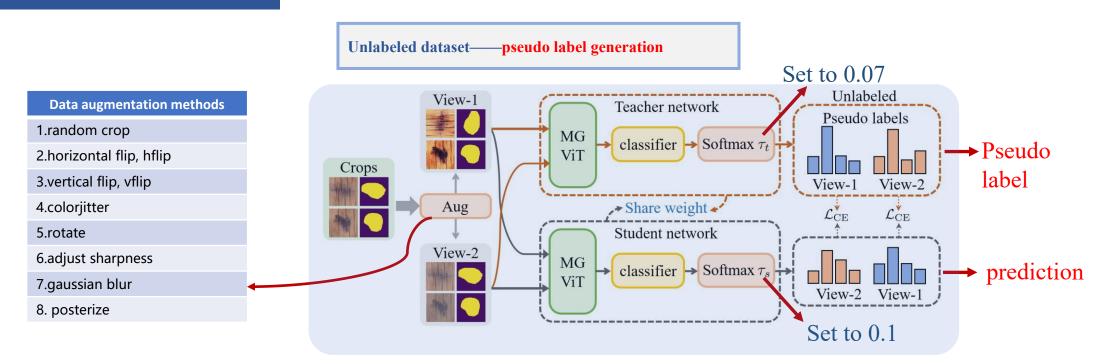


In cases where the predicted masks are rough, the features gradually focus on the anomalous regions as the guidance deepens.

Method



Representation learning



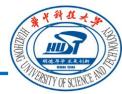
Logits output by the linear classifier

$$\tilde{l}_j = \mathcal{H}(f(\tilde{x}_j))$$
 x_j : input image $\mathcal{H}(\cdot)$: linear classifier

Pseudo label
$$\hat{q}_j^{(k)} = \frac{\exp(l_j^{(k)}/\tau_t)}{\sum_{k=1}^{C^1 + C^{\mathbf{u}}} \exp(\hat{l}_j^{(k)}/\tau_t)}$$

$$\hat{q}_{j}^{(k)} = \frac{\exp(\hat{l}_{j}^{(k)}/\tau_{t})}{\sum_{k=1}^{C^{1}+C^{\mathbf{u}}} \exp(\hat{l}_{j}^{(k)}/\tau_{t})} \qquad \mathbf{Prediction} \qquad \hat{p}_{j}^{(k)} = \frac{\exp(\hat{l}_{j}^{(k)}/\tau_{s})}{\sum_{k=1}^{C^{1}+C^{\mathbf{u}}} \exp(\hat{l}_{j}^{(k)}/\tau_{s})}$$

Method



loss

Cross-entropy loss

$$\mathcal{L}_{CE}(p,q) = -\sum_{c=0}^{c^{1}+c^{u}-1} p^{c} \log q^{c}$$

Classification loss for unlabeled dataset

$$\mathcal{L}_{\text{cls}}^{\mathbf{u}} = \frac{1}{|B^{\mathbf{u}}|} \sum_{j \in B^{\mathbf{u}}} (\mathcal{L}_{\text{CE}}(\hat{q}_j, \tilde{p}_j) + \mathcal{L}_{\text{CE}}(\tilde{q}_j, \hat{p}_j))$$

Pseudo label calculation loss

Classification loss for auxiliary dataset

$$\mathcal{L}_{\text{cls}}^{\mathbf{l}} = \frac{1}{|B^{\mathbf{l}}|} \sum_{j \in B^{\mathbf{l}}} (\mathcal{L}_{\text{CE}}(\hat{y}_j, \tilde{p}_j) + \mathcal{L}_{\text{CE}}(\tilde{y}_j, \hat{p}_j))$$

Ground truth calculation loss

Regularization loss

$$\mathcal{L}_{\text{reg}}^{\mathbf{u}} = \mathcal{L}_{\text{CE}}(\bar{p}_j, \bar{p}_j) \quad \bar{p}_j = \frac{1}{2|B^{\mathbf{u}}|} \sum_{j \in B^{\mathbf{u}}} (\hat{p}_j + \tilde{p}_j)$$

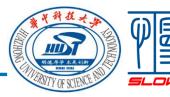
Overall training objective

$$\mathcal{L} = \lambda (\mathcal{L}_{rep}^{\mathbf{l}} + \mathcal{L}_{cls}^{\mathbf{l}}) + (1 - \lambda)(\mathcal{L}_{rep} + \mathcal{L}_{cls}^{\mathbf{u}} + \mu \mathcal{L}_{reg}^{\mathbf{u}})$$

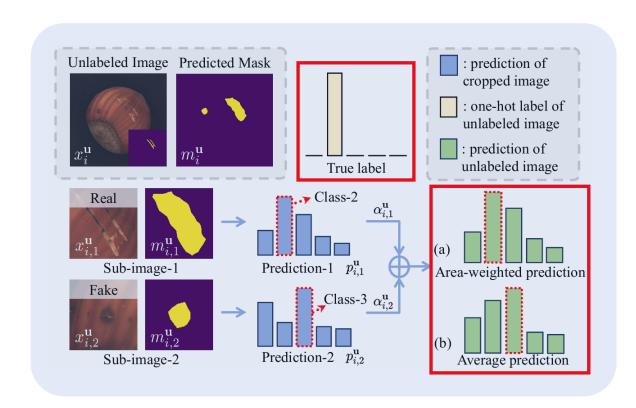
Classification loss

Contrastive

loss



Region Merging



The prediction result of the original image

is the weighted sum of the prediction

results of sub-images.

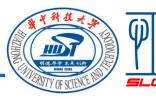
$$p_i^{\mathbf{u}} = \sum_{k=1}^N lpha_{i,k}^{\mathbf{u}} p_{i,k}^{\mathbf{u}}$$

Sub-image weights

$$\alpha_{i,k}^{\mathbf{u}} = \frac{\exp(\sqrt{\mathbf{a}_{i,k}^{\mathbf{u}}}/\tau_{\alpha})}{\sum_{k=1}^{\bar{\delta}_{i}} \exp(\sqrt{\mathbf{a}_{i,k}^{\mathbf{u}}}/\tau_{\alpha})}$$

Sub-image defect area (number of defective pixels)

The larger the area, the greater the weight, which suppresses the influence of small-area false detections on the final classification results.



Quantitative experimental results (MVTec AD, MTD)

Datasets	Metric	IIC[23]	GATCluster[31]	SCAN[42]	UNO[13]	GCD[43]	SimGCD[45]	AMEND[3]	AC[38] (Unsup.)	IuSc [28] nomalyNC
MVTec AD [5]	NMI ARI F_1	0.093 0.020 0.285	0.136 0.053 0.264	0.210 0.103 0.335	0.146 0.052 0.342	0.417 0.302 0.553	0.452 0.346 0.569	0.431 0.333 0.542	$\begin{array}{c} 0.525 \\ 0.431 \\ 0.604 \end{array}$	0.613 0.526 0.712
MTD [21]	$egin{array}{c} NMI \\ ARI \\ F_1 \end{array}$	0.064 0.020 0.252	0.028 0.009 0.243	0.041 0.029 0.282	0.034 0.011 0.221	0.211 0.115 0.381	0.105 0.048 0.293	0.138 0.067 0.324	0.179 <u>0.120</u> 0.346	0.268 0.228 0.509

Without using normal samples from the training set

MVTec AD 8.8%NMI improvement 9.5% ARI improvement 10.8% F1 improvement

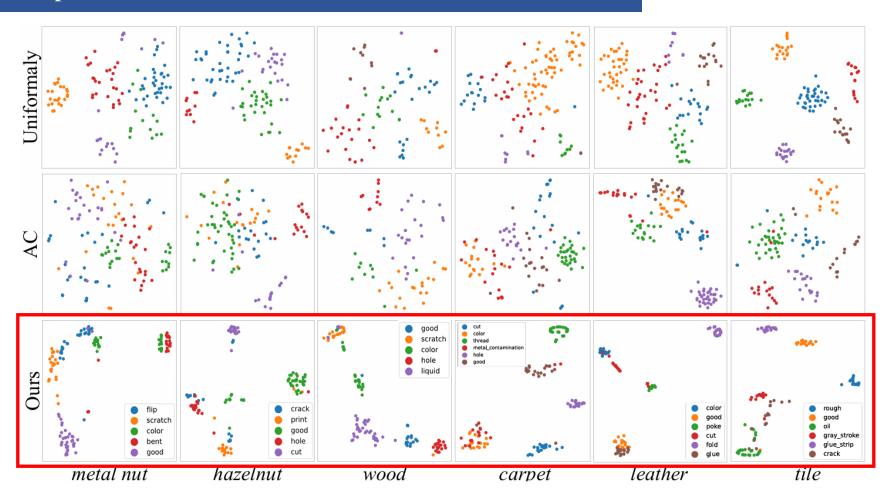
Datasets	Metric	AC[38] (Semi-sup.)	UniFormaly[26] (0.953 / 0.837)	PatchCore[36] (0.938 / 0.729) +AnomalyNCD	RD++[41] (0.950 / 0.741) +AnomalyNCD	EfficientAD[4] (0.917 / 0.731) +AnomalyNCD	PNI[2] (0.942 / 0.516) +AnomalyNCD	CPR[27] (0.964 / -) +AnomalyNCD
MVTec AD [5]	NMI ARI F_1	0.608 0.489 0.652	0.547 0.433 0.645	0.670 0.601 <u>0.769</u>	0.631 0.542 0.721	0.516 0.394 0.641	0.675 0.609 0.769	0.736 0.674 0.805
MTD [21]	NMI ARI F_1	0.390 0.314 0.490	0.421 0.322 <u>0.609</u>	0.380 0.390 0.617	0.368 <u>0.361</u> 0.600	0.220 0.188 0.467	0.181 0.219 0.465	- - -

Using normal samples from the training set

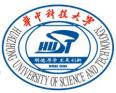
MVTec AD
12.8%NMI improvement
18.5% ARI improvement
15.3% F1 improvement



Qualitative experimental results--t-SNE visualization of features

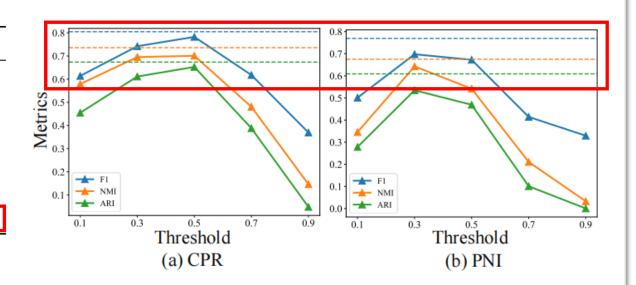


Novel anomaly class discovery in industrial scenarios generates features with smaller intra-class distances and larger inter-class distances.

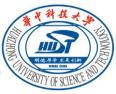


Ablation—MEBin

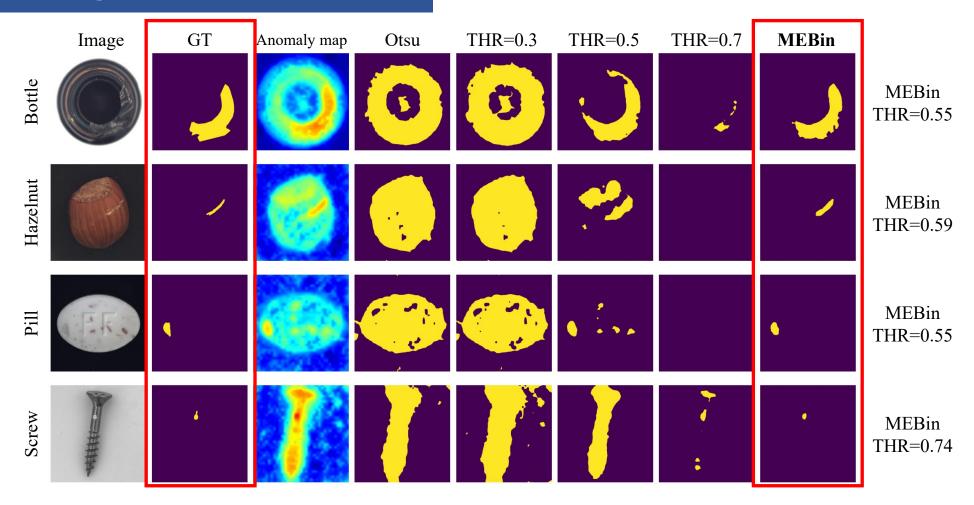
	Avg FPR↓	Avg FNR ↓	NMI ↑	ARI↑	$F_1 \uparrow$
$\epsilon = 0.1$	0.572	0.617	0.554	0.482	0.650
$\epsilon = 0.3$	0.678	0.742	0.499	0.404	0.587
$\epsilon = 0.5$	0.484	0.165	0.567	0.458	0.640
$\epsilon = 0.7$	0.269	0.247	0.495	0.395	0.623
$\epsilon = 0.9$	0.544	0.593	0.077	0.013	0.337
Otsu [33]	0.676	0.525	0.382	0.268	0.499
Ours	0.153	0.035	0.613	0.526	0.712



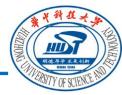
MEBin achieves the lowest false positive and false negative rates, leading to the optimal overall classification performance of the model and demonstrating adaptability to various defect detection algorithms.



Ablation — Qualitative results of MEBin



The binarization results of MEBin are closest to the ground-truth annotations.



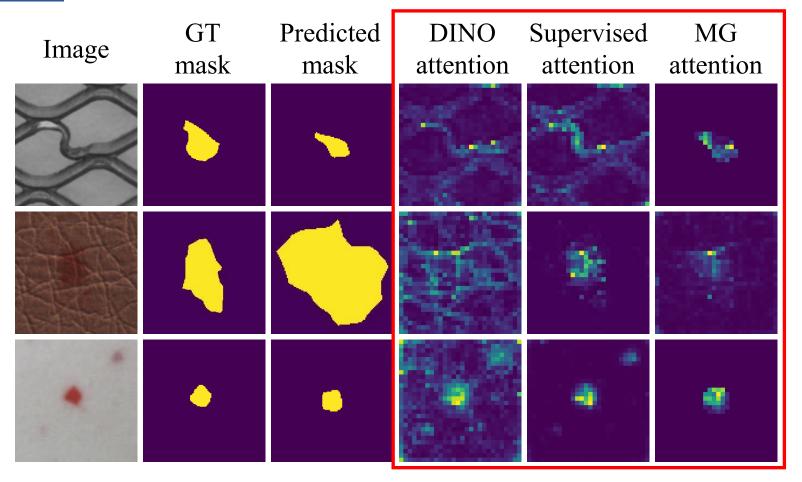
Ablation—MEBin

	N	//VTec A	D	MTD			
L_m	NMI	ARI	F_1	NMI	ARI	F_1	
1	0.606	0.508	0.690	0.191	0.157	0.420	
3	0.608	0.511	0.694	0.209	0.173	0.436	
6	0.613	0.519	0.713	0.253	0.214	0.492	
9	0.613	0.526	0.712	0.268	0.228	0.509	
12	0.609	0.521	0.712	0.249	0.213	0.492	

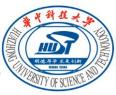
Mask Mechanism	NMI	ARI	F_1
(a) w/o MGA	0.598	0.494	0.698
(b) all tokens	0.507	0.382	0.600
(c) patch tokens	0.563	0.467	0.686
(d) class token (Ours)	0.613	0.526	0.712

The model achieves the optimal classification metrics when using the mask-guided attention (MGA) approach.

Ablation—MGViT



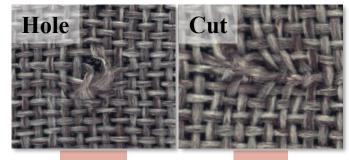
Using an unsupervised setting, it achieves defect attention effects close to those of supervised methods, saving significant human and material resources.



Ablation—auxiliary dataset

	N	//VTec Al	D	MTD			
	NMI	ARI	F_1	NMI	ARI	F_1	
w/o \mathcal{D}^{l}	0.583	0.506	0.689	0.227	0.202	0.485	
w $\mathcal{D}^{\mathbf{l}}$		0.526					

Using auxiliary datasets can improve the overall performance of the model.



Cut Poke

With the aid of labeled defect classes, it can effectively distinguish different defect classes with similar appearances.

Hole Cut
Cut

Cut Poke Poke

These defects are sometimes not easily distinguishable by the human eye.

Results with labled data

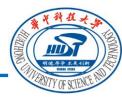
Results without labled data

Ablation—Region Merging

	N	MVTec AD			MTD		
Merge	NMI	ARI	F_1	NMI	ARI	F_1	
(i) Avg	0.610	0.521	0.709	0.257	0.223	0.501	
(ii) Score Avg	0.600	0.513	0.703	0.228	0.208	0.485	
(iii) Area Avg	0.613	0.526	0.712	0.268	0.228	0.509	

Using averaging predictions of sub-images, the model achieves the best overall performance, surpassing direct averaging and anomaly score-weighted averaging.

Acknowledgments



Sincere thanks to all members of the **SLOW** team!

Ziming Huang

Huazhong University

of Science and Technology

zmhuang@hust.edu.cn

Xurui Li

Huazhong University
of Science and Technology
xrli_plus@hust.edu.cn

Haotian Liu

Huazhong University
of Science and Technology
htliu_master@hust.edu.cn

Feng Xue
University of Trento
feng.xue@unitn.it

Yuzhe Wang

Huazhong University
of Science and Technology
yuzw@hust.edu.cn

Yu Zhou

Huazhong University
of Science and Technology,
Wuhan JingCe Electronic Group Co., LTD
yuzhou@hust.edu.cn

Sincere thanks to Wuhan Jingce Electronic Group Co., Ltd. for its long-term funding of the research group's basic research in the field of industrial vision!

Thank you for your attention! Your corrections are sincerely appreciated!

Welcome to download and use!

Paper and Code: https://github.com/HUST-SLOW