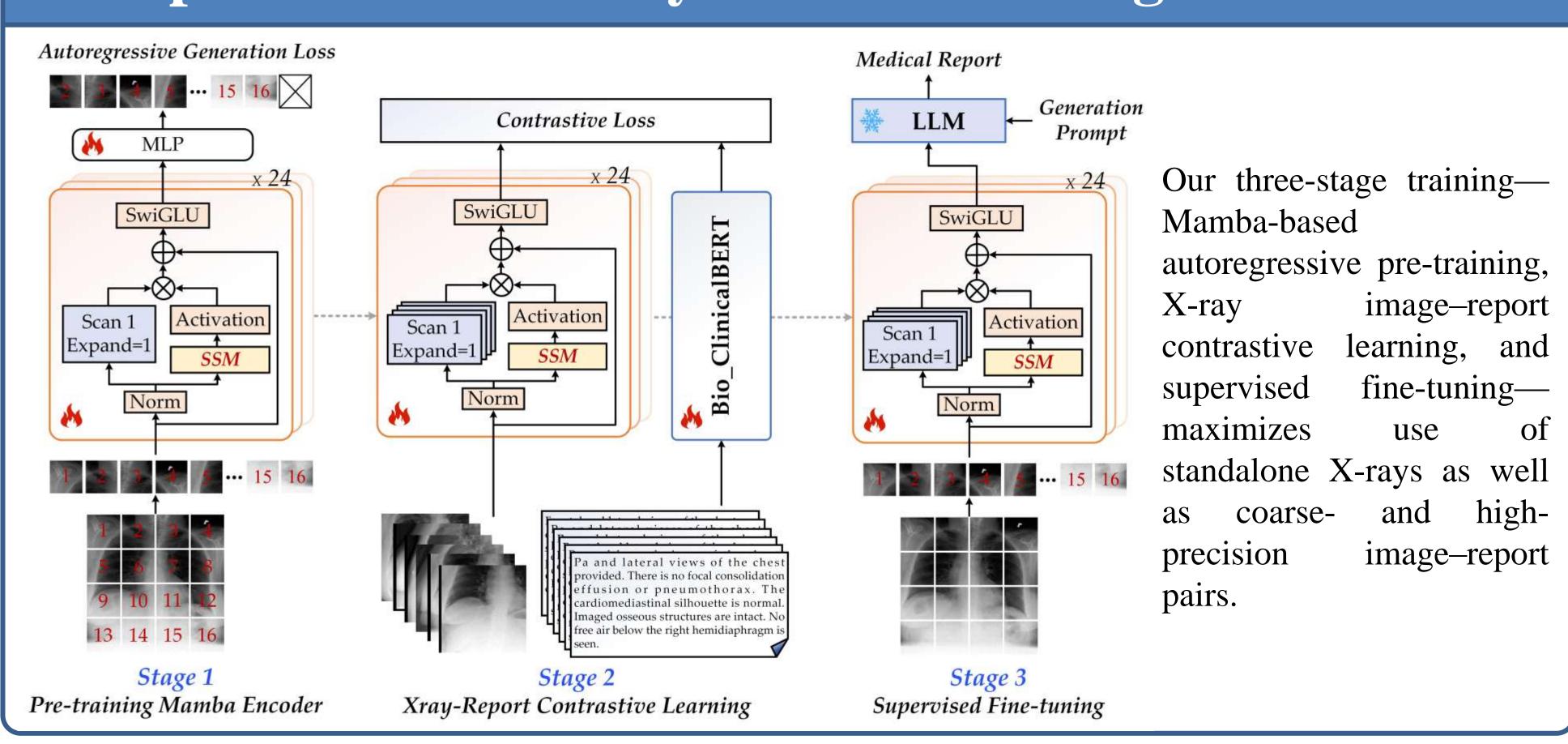


CXPMRG-Bench: Pre-training and Benchmarking for X-ray Medical Report Generation on CheXpert Plus Dataset

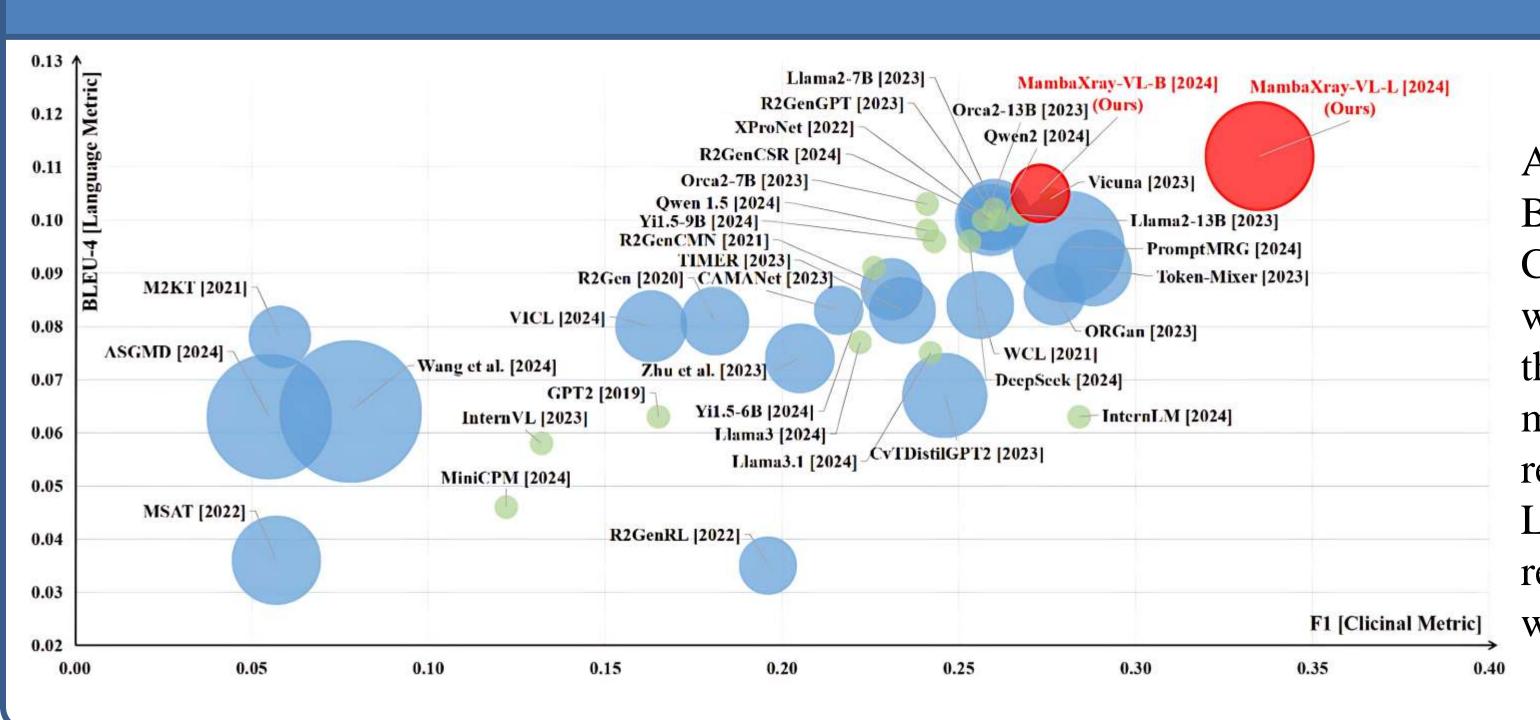


Xiao Wang, Fuling Wang, Yuehang Li, Qingchuan Ma, Shiao Wang, Bo Jiang, Jin Tang

Motivation

- 1 Transformer-based vision backbone models exhibit quadratic time complexity, whereas the Mamba architecture demonstrates linear computational complexity. Current medical pre-training models predominantly employ single-stage frameworks that utilize either image-only datasets or image-report paired data, resulting in inadequate utilization of comprehensive medical data resources.
- 2 The newly released CheXpert Plus, a large-scale thoracic imaging dataset comparable to MIMIC-CXR, holds significant research value. However, its lack of standardized evaluation benchmarks presents challenges for comparative methodological validation in downstream studies.

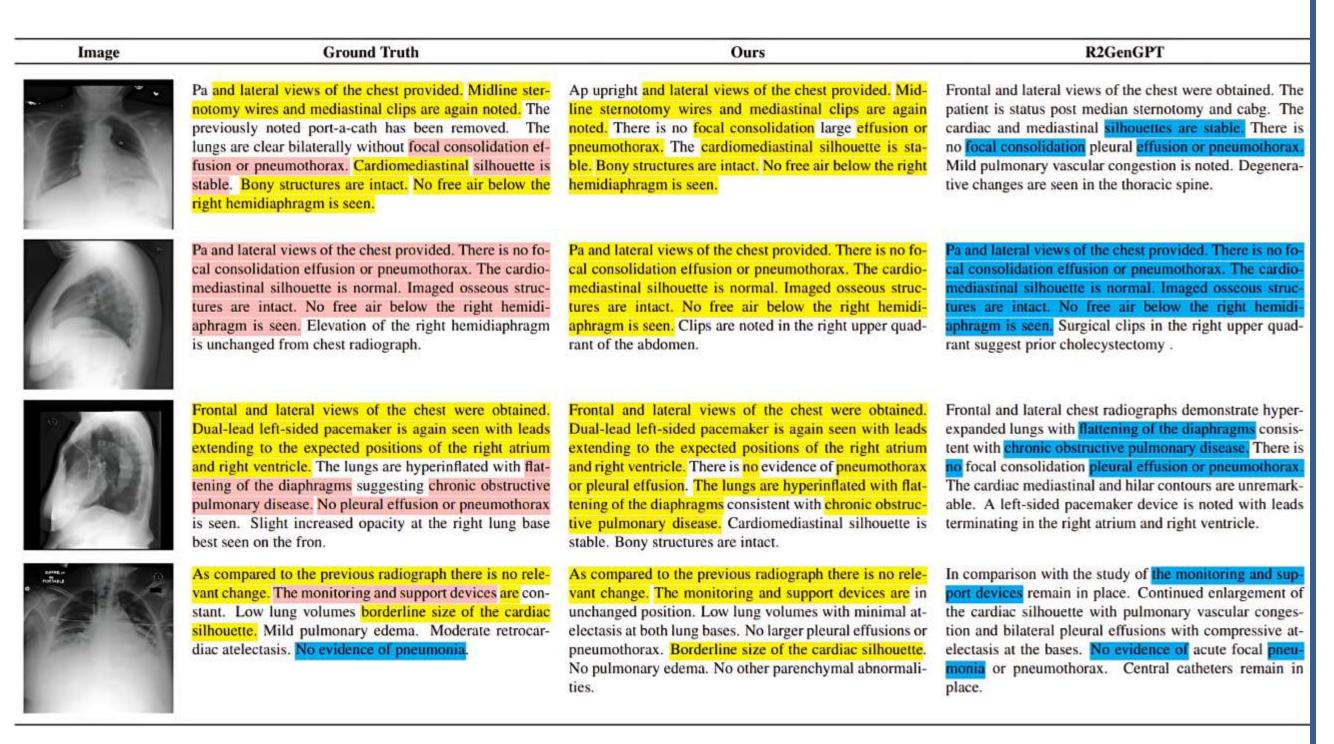
Proposed MambaXray-VL Pre-training Framework



Experiment

Comparison of our model with mainstream models on CheXpert Plus.

Index	Algorithm	Publish	Encoder	Decoder	B4, R,	M,	C	P,	R,	F1	Time (min)	Param (M)	Code
#01	R2GenRL [42]	ACL22	Transformer	Transformer	0.035, 0.186,	0.101,	0.012	0.193	0.229	0.196	44.33	59.87	URL
#02	XProNet [53]	ECCV22	Transformer	Transformer	0.100, 0.265,	0.146,	0.121	0.314	0.247	0.259	6.3	62.35	URL
#03	MSAT [61]	MICCAI22	ViT-B/16	Transformer	0.036, 0.156,	0.066,	0.018	0.044	0.142	0.057	5.72	141.10	URL
#04	ORGan [24]	ACL23	CNN	Transformer	0.086, 0.261,	0.135,	0.107	0.288	0.287	, 0.277	46.66	67.50	URL
#05	M2KT [68]	MIA21	CNN	Transformer	0.078, 0.247,	0.101,	0.077	0.044	0.142	, 0.058	22.5	69.07	URL
#06	TIMER [64]	CHIL23	Transformer	Transformer	0.083, 0.254,	0.121,	0.104	0.345	, 0.238	, 0.234	26.5	79.28	URL
#07	CvT2DistilGPT2 [39]	AIM23	Transformer	GPT2	0.067, 0.238,	0.118,	0.101	0.285	0.252	0.246	13.93	128	URL
#08	R2Gen [8]	EMNLP20	Transformer	Transformer	0.081, 0.246,	0.113,	0.077	0.318	0.200	0.181	110.05	83.5	URL
#09	R2GenCMN [9]	ACL21	Transformer	Transformer	0.087, 0.256,	0.127,	0.102	0.329	0.241	0.231	66.08	67.70	URL
#10	Zhu et al. [76]	MICCAI23	Transformer	Transformer	0.074, 0.235,	0.128,	0.078	0.217	0.308	, 0.205	10.03	85.95	URL
#11	CAMANet [54]	IEEE JBH23	Swin-Former	Transformer	0.083, 0.249,	0.118,	0.090	0.328	0.224	0.216	23.08	43.22	URL
#12	ASGMD [65]	ESWA24	ResNet-101 Transformer	Transformer	0.063, 0.220,	0.094,	0.044	0.146	, 0.108	, 0.055	87.37	277.41	URL
#13	Token-Mixer [69]	IEEE TMI23	ResNet-50	Transformer	0.091, 0.261,	0.135,	0.098	0.309	0.270	0.288	17.54	104.34	URL
#14	PromptMRG [28]	AAAI24	ResNet-101	Bert	0.095, 0.222,	0.121,	0.044	0.258	0.265	0.281	108.45	219.92	URL
#15	R2GenGPT [63]	Meta-Rad.23	Swin-Transformer	Llama2	0.101, 0.266,	0.145,	0.123	0.315	0.244	0.260	77.8	90.9	URL
#16	WCL [66]	EMNLP21	Transformer	Transformer	0.084, 0.253,	0.126,	0.103	0.335	0.259	0.256	24.08	81.29	URL
#17	R2GenCSR [57]	arXiv24	VMamba	Llama2	0.100, 0.265,	0.146,	0.121	0.315	0.247	0.259	31.2	91.7	URL
#18	VLCI [7]	arXiv24	Transformer	Transformer	0.080, 0.247,	0.114,	0.072	0.341	, 0.175	0.163	123.71	91.46	URL
#19	Wang et al. [58]	arXiv24	ViT	Llama2	0.064, 0.220,	0.110,	0.059	0.175	0.099	, 0.078	10.82	358.80	URL
#20	MambaXray-VL-B	Ours	MambaXray-VL	Llama2	0.105, 0.267,	0.149,	0.117	0.333	0.264	0.273	50.66	57.31	URL
#21	MambaXray-VL-L	Ours	MambaXray-VL	Llama2	0.112, 0.276,			0.377	0.319	0.335	55.18	202.32	URL


Benchmark Overview

An overview of Banchmark on the CheXpert Plus dataset, where blue represents the mainstream models, green represents different LLM/VLM, and red represents the model we proposed.

Visualization & Conclusions

Visualization of model predictions on MIMIC-CXR. X-ray images and their corresponding ground-truths, along with the output of our model and R2GenGPT model generation reports on the MIMIC-CXR dataset. Matching sentences in our report are highlighted in yellow, R2GenGPT matching sentences are highlighted in cyan, and sentences matching by both models are highlighted in pink.

Our method offers three advantages:

- 1 A comprehensive benchmarking framework has been established for the newly released CheXpert Plus dataset, ensuring systematic and equitable performance evaluation.
- 2 We propose a three-stage medical pre-training framework that achieves comprehensive integration of three heterogeneous data modalities.
- 3 The proposed MambaXray-VL architecture demonstrates seamless integration capability as a vision backbone for existing models, achieving significant performance enhancements.