

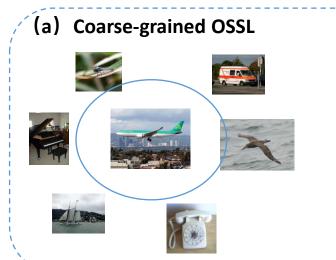
CLIP-driven Coarse-to-fine Semantic Guidance for Fine-grained Open-set Semi-supervised Learning

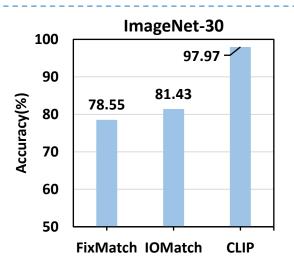
Xiaokun Li, Yaping Huang, Qingji Guan Beijing Key Laboratory of Traffic Data Mining and Embodied Intelligence, Beijing Jiaotong University

Fine-grained open-set semi-supervised learning (OSSL) investigates a practical scenario where unlabeled data may contain fine-grained out-of-distribution (OOD) samples. Due to the subtle visual differences among in-distribution (ID) samples, as well as between ID and OOD samples, it is extremely challenging to separate the ID and OOD samples.

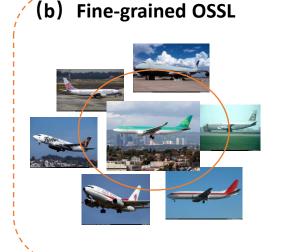
Problem Formulation

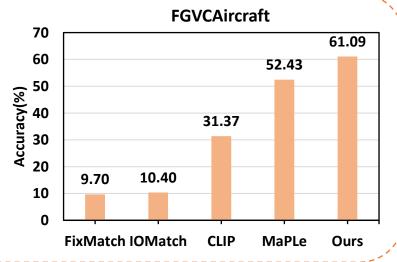
Comparison of OSSL methods on coarse-grained and fine-grained classification tasks.





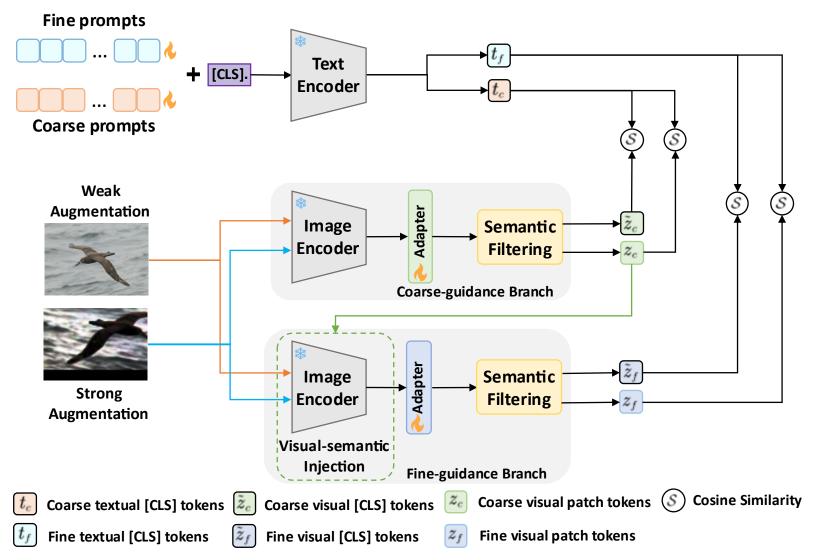
✓ On the coarse-grained ImageNet-30 dataset, some out-standing methods (e.g., FixMatch, IOMatch) achieve excellent performance. CLIP trained on the large-scale image-text pairs dataset achieves high performance as expected.





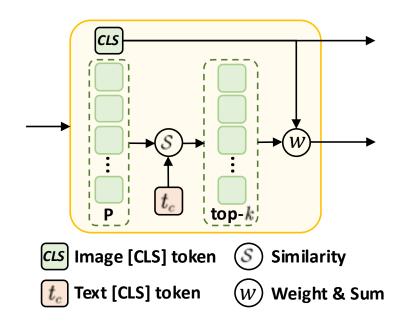
✓ On the fine-grained FGVCAircraft dataset, the generalization capabilities of CLIP remain effective but limited, as it tends to focus on general attributes while failing to capture the fine-grained details.

Overview of the proposed CFSG-CLIP framework.



CFSG-CLIP is composed of a coarseguidance branch and a fine-guidance branch based on the pre-trained CLIP model.

Semantic Filtering Module



Top-k patch-level visual features:

$$s_{c_i} = \sin(z_{c_i}, t_c^m),$$

$$\mathcal{K} = \{ i \in P : \operatorname{rank}(s_{c_i}) \le k \},$$

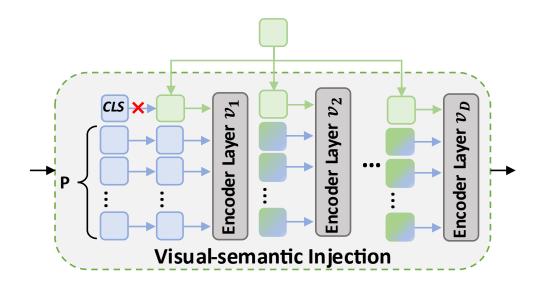
Image-level global feature weighting:

$$w_{c_i} = \frac{\exp(\operatorname{sim}(z_{c_i}, \tilde{z}_c))}{\sum \exp(\operatorname{sim}(z_{c_i}, \tilde{z}_c))}, i \in \mathcal{K}$$

$$z_c = \sum_{i \in \mathcal{K}} w_{c_i} z_{c_i}$$

To capture fine-grained details and maintain semantic consistency, we design a semantic filtering module that leverages both textual and visual features to obtain global and local visual features.

Semantic Filtering Module



Injecting the local visual features into transformer blocks:

$$[\underline{\hspace{0.5cm}}, E_j] = \mathcal{V}_j([\operatorname{proj}(z_c), E_{j-1}]) \quad j = 1, 2, \dots, D,$$
$$[\tilde{z}_{f_j}, E_j] = \mathcal{V}_j([\operatorname{proj}(z_c), E_{j-1}]) \quad j = D+1, \dots, T,$$

To guide the visual encoder to focus more on the fine-grained details of the image, we further design a visual semantic injection strategy in the fine-guidance branch.

Dual-branch Training

Optimization of Coarse-guidance Branch:

$$\begin{split} \tilde{p}_c^l &= \frac{\exp(\sin(\tilde{z}_c^l, t_c^m)/\tau)}{\sum_{m'} \exp(\sin(\tilde{z}_c^l, t_c^m)/\tau)}, \\ p_c^l &= \frac{\exp(\sin(z_c^l, t_c^m)/\tau)}{\sum_{m'} \exp(\sin(z_c^l, t_c^m)/\tau)}, \\ L_c &= H(y^l, \tilde{p}_c^l) + H(y^l, p_c^l) + \lambda_c(\mathcal{F}(x^u)H(\tilde{p}_c^{u_w}, \tilde{p}_c^{u_s}) \\ &+ \mathcal{F}(x^u)H(p_c^{u_w}, p_c^{u_s})), \end{split}$$

Dual-branch Training

Optimization of Fine-guidance Branch:

$$\begin{split} \tilde{p}_f^l &= \frac{\exp(\text{sim}(\tilde{z}_f^l, t_f^m)/\tau)}{\sum_{m'} \exp(\text{sim}(\tilde{z}_f^l, t_f^m)/\tau)} \\ p_f^l &= \frac{\exp(\text{sim}(z_f^l, t_f^m)/\tau)}{\sum_{m'} \exp(\text{sim}(z_f^l, t_f^m)/\tau)} \\ L_f &= H(y^l, \tilde{p}_f^l) + H(y^l, p_f^l) + \lambda_f(\mathcal{F}(\tilde{u}_f) H(\tilde{p}_f^{u_w}, \tilde{p}_f^{u_s}) \\ &+ \mathcal{F}(u_f) H(p_f^{u_w}, p_f^{u_s})), \end{split}$$

Dual-branch Training

Optimization of Fine-guidance Branch:

$$\begin{split} \tilde{p}_f^l &= \frac{\exp(\text{sim}(\tilde{z}_f^l, t_f^m)/\tau)}{\sum_{m'} \exp(\text{sim}(\tilde{z}_f^l, t_f^m)/\tau)} \\ p_f^l &= \frac{\exp(\text{sim}(z_f^l, t_f^m)/\tau)}{\sum_{m'} \exp(\text{sim}(z_f^l, t_f^m)/\tau)} \\ L_f &= H(y^l, \tilde{p}_f^l) + H(y^l, p_f^l) + \lambda_f(\mathcal{F}(\tilde{u}_f) H(\tilde{p}_f^{u_w}, \tilde{p}_f^{u_s}) \\ &+ \mathcal{F}(u_f) H(p_f^{u_w}, p_f^{u_s})), \end{split}$$

Experiments

Table 1. Classification accuracy (%) for CLIP-based methods on four fine-grained benchmark datasets with varying labeled set sizes under the fine-grained OSSL setting. The results are presented as the mean with standard deviation over three runs using different random seeds.

Method	Stanford Dogs		Stanford Cars		CUB-200-2011		FGVCAircraft	
	5	20	5	20	5	20	5	20
CLIP [27]	79.25±0.00	79.25 ± 0.00	75.97 ± 0.00	75.97 ± 0.00	66.00±0.00	66.00±0.00	31.37±0.00	31.37±0.00
CLIP-LORA [41]	83.81±0.37	84.31 ± 0.27	82.71 ± 0.56	$82.45{\scriptstyle\pm1.30}$	70.95 ± 0.85	$73.40{\scriptstyle\pm0.75}$	40.89 ± 1.73	$42.37{\scriptstyle\pm0.71}$
CLIP-Adapter [7]	82.91±0.25	$86.02{\scriptstyle\pm0.27}$	84.31 ± 0.02	$87.13{\scriptstyle\pm0.28}$	80.03±0.29	$84.77{\scriptstyle\pm1.02}$	47.77 ± 0.90	55.79 ± 0.73
CoOp [45]	83.01±0.26	$85.68{\scriptstyle\pm0.37}$	85.45 ± 0.31	$87.64{\scriptstyle\pm0.46}$	80.10±0.29	$85.40{\scriptstyle\pm0.37}$	45.39 ± 0.96	55.43 ± 0.30
LoCoOp [24]	83.08±0.25	$86.26{\scriptstyle\pm0.11}$	84.10 ± 0.72	$87.83{\scriptstyle\pm0.66}$	79.27 ± 0.45	$85.63{\scriptstyle\pm0.54}$	45.53±1.36	54.67 ± 1.59
PLOT [3]	84.46±0.07	87.11 ± 0.09	86.28 ± 0.30	$88.59{\scriptstyle\pm0.45}$	81.43±0.66	$87.20{\scriptstyle\pm0.14}$	49.59 ± 0.37	$58.25{\scriptstyle\pm0.93}$
MaPLe [14]	85.64±0.15	$87.64{\scriptstyle\pm0.20}$	$88.16{\scriptstyle\pm0.25}$	$90.34{\scriptstyle\pm0.25}$	83.30±0.33	$88.77{\scriptstyle\pm0.21}$	52.43 ± 0.47	$64.33{\scriptstyle\pm1.21}$
Ours	85.48±0.21	89.42±0.16	90.38±0.09	93.08±0.08	84.73±0.17	91.75±0.24	61.09±0.27	73.56±0.58

Table 2. Open-set classification balanced accuracy (%) for CLIP-based methods on four fine-grained benchmark datasets with varying labeled set sizes under the fine-grained OSSL setting.

Method	Stanford Dogs		Stanford Cars		CUB-200-2011		FGVCAircraft	
	5	20	5	20	5	20	5	20
CLIP [27]	77.17±0.00	77.17 ± 0.00	75.70±0.00	75.70 ± 0.00	64.10±0.00	64.10±0.00	31.08±0.00	31.08±0.00
CLIP-LORA [41]	82.34±0.57	$82.67{\scriptstyle\pm0.36}$	82.10±0.56	81.03 ± 1.24	70.52 ± 1.34	$72.20{\scriptstyle\pm0.45}$	40.10±1.69	$41.57{\scriptstyle\pm0.69}$
CLIP-Adapter [7]	81.63±0.14	$84.36{\scriptstyle\pm0.25}$	83.65±0.04	$86.50{\scriptstyle\pm0.25}$	81.36±0.60	$85.20{\scriptstyle\pm0.95}$	46.87 ± 0.88	$53.52{\scriptstyle\pm1.35}$
CoOp [45]	81.65±0.20	$84.25{\scriptstyle\pm0.41}$	84.63±0.36	$86.84{\scriptstyle\pm0.42}$	81.04±0.06	$84.92{\scriptstyle\pm0.51}$	44.55±0.94	$54.35{\scriptstyle\pm0.30}$
LoCoOp [24]	81.78±0.23	$84.68{\scriptstyle\pm0.20}$	83.25±0.76	87.17 ± 0.64	80.45±0.86	$85.46{\scriptstyle\pm0.32}$	44.67±1.35	$53.60{\scriptstyle\pm1.57}$
PLOT [3]	82.95±0.07	$85.54{\scriptstyle\pm0.11}$	85.58±0.32	87.83 ± 0.34	83.32±0.31	$87.16{\scriptstyle\pm0.17}$	48.68±0.37	$57.13{\scriptstyle\pm0.92}$
MaPLe [14]	84.09±0.19	$86.02{\scriptstyle\pm0.25}$	87.43±0.27	$89.48{\scriptstyle\pm0.25}$	84.72±0.53	$88.66{\scriptstyle\pm0.60}$	51.79±0.43	$63.12{\scriptstyle\pm1.19}$
Ours	84.02±0.15	87.77±0.19	89.65±0.05	92.34±0.10	86.46±0.25	90.92±0.24	59.92±0.26	72.13±0.57

Table 3. Classification accuracy (%) on the Semi-Aves dataset is reported for two settings: unlabeled data with ID samples U_{in} , and unlabeled data with a mix of ID and OOD samples $U_{in} + U_{out}$.

Method	$ U_{in} $	$U_{in} + U_{out}$
CLIP [27]	10.05±0.00	10.05 ± 0.00
CLIP-Adapter [7]	50.16±1.55	50.10 ± 0.44
CoOp [45]	47.67±0.97	47.93 ± 0.76
LoCoOp [24]	48.04±0.96	47.30 ± 1.30
PLOT [3]	53.68±0.35	54.72 ± 0.96
MaPLe [14]	60.39 ± 0.10	59.68 ± 0.64
Ours	65.63±0.27	63.69±0.74

Experiments

Table 4. Ablation studies on the Stanford cars and FGVCAircraft datasets. The ' \mathcal{A} ' stands for adapter, 'SFM' denotes semantic filtering module, 'C' means coarse-guidance branch, 'F' means fine-guidance branch, and 'VSI' is visual-semantic injection strategy. The results are reported based on a single run with seed 1.

Method	Stanford Cars	FGVCAircraft
CoOp+A	86.31	50.42
+SFM (C)	89.15	54.65
+SFM (C)+SFM (F)	90.03	58.01
+SFM (C)+SFM (F)+VSI	90.28	61.07

Table 5. Ablation studies for semantic filtering module. The results are reported based on a single run with seed 1.

Method	Stanford Cars	FGVCAircraft
$CoOp+\mathcal{A}$	86.31	50.42
Textual Filtering	88.65	53.57
Visual Weighting	89.15	54.65

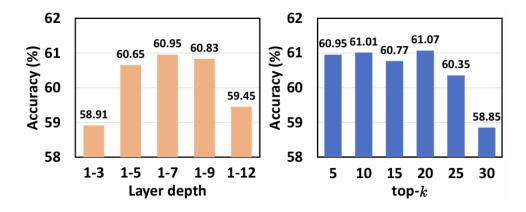


Figure 6. Ablation studies on injection depth (left) and top-k (right) on the FGVCAircraf datasets. The results are reported based on a single run with seed 1.

Table 6. Evaluation results for different operations of employing local visual features. The results are reported based on a single run with seed 1.

Method	Stanford Cars	FGVCAircraft
Concatenate	89.99	60.47
Replace	90.28	61.07

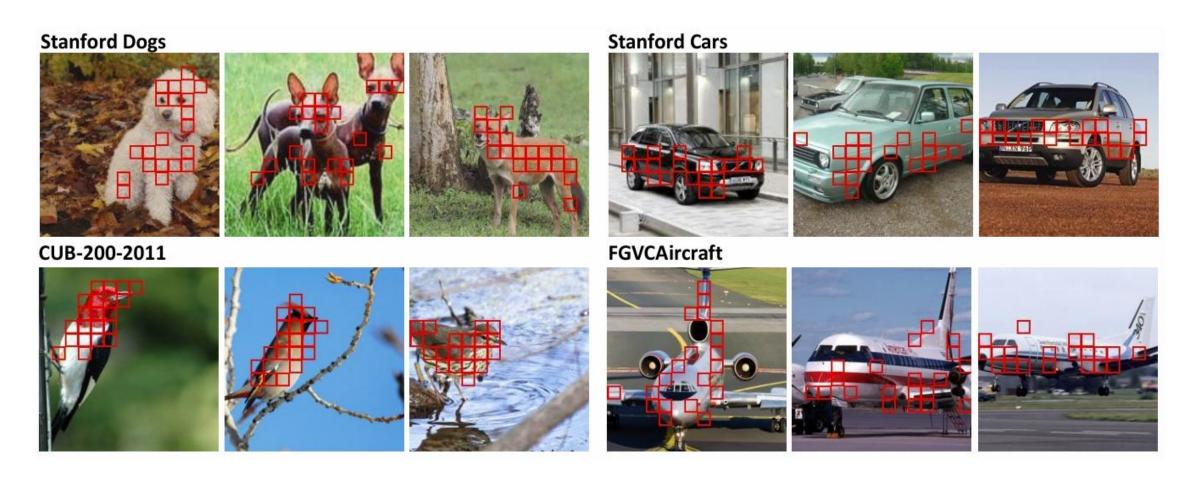


Figure 5. Visualization of patch-tokens extracted by semantic filtering module. We find that the semantic filtering module can correctly extract local visual regions on different fine-grained datasets.

Thank you!