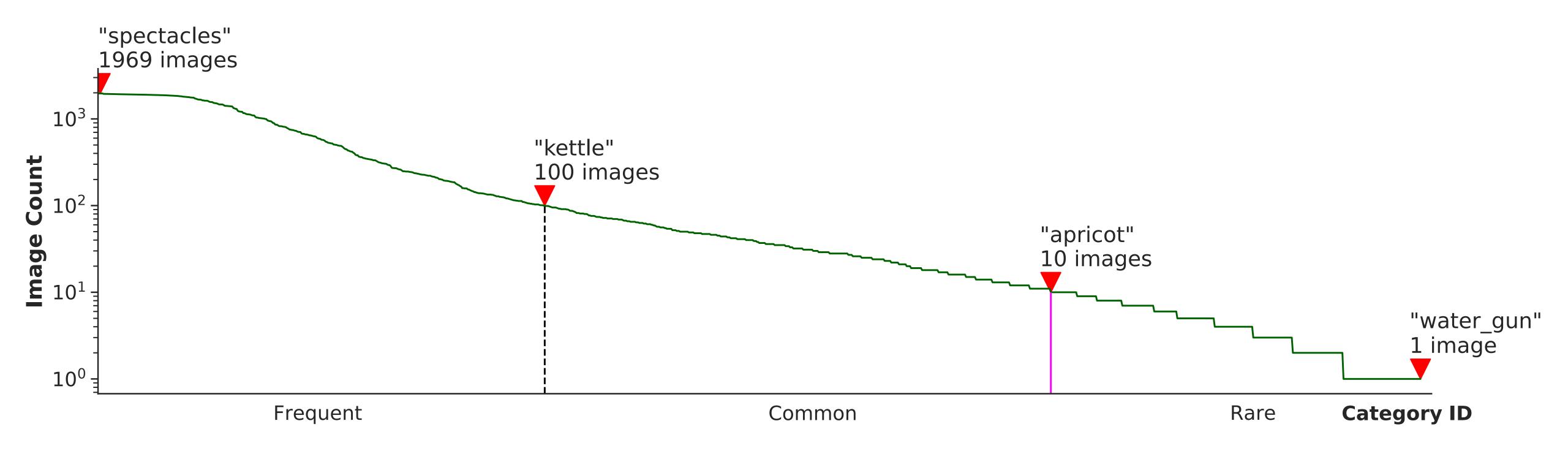
SimLTD: Simple Supervised and Semi-Supervised Long-Tailed Object Detection

Phi Vu Tran LexisNexis Risk Solutions

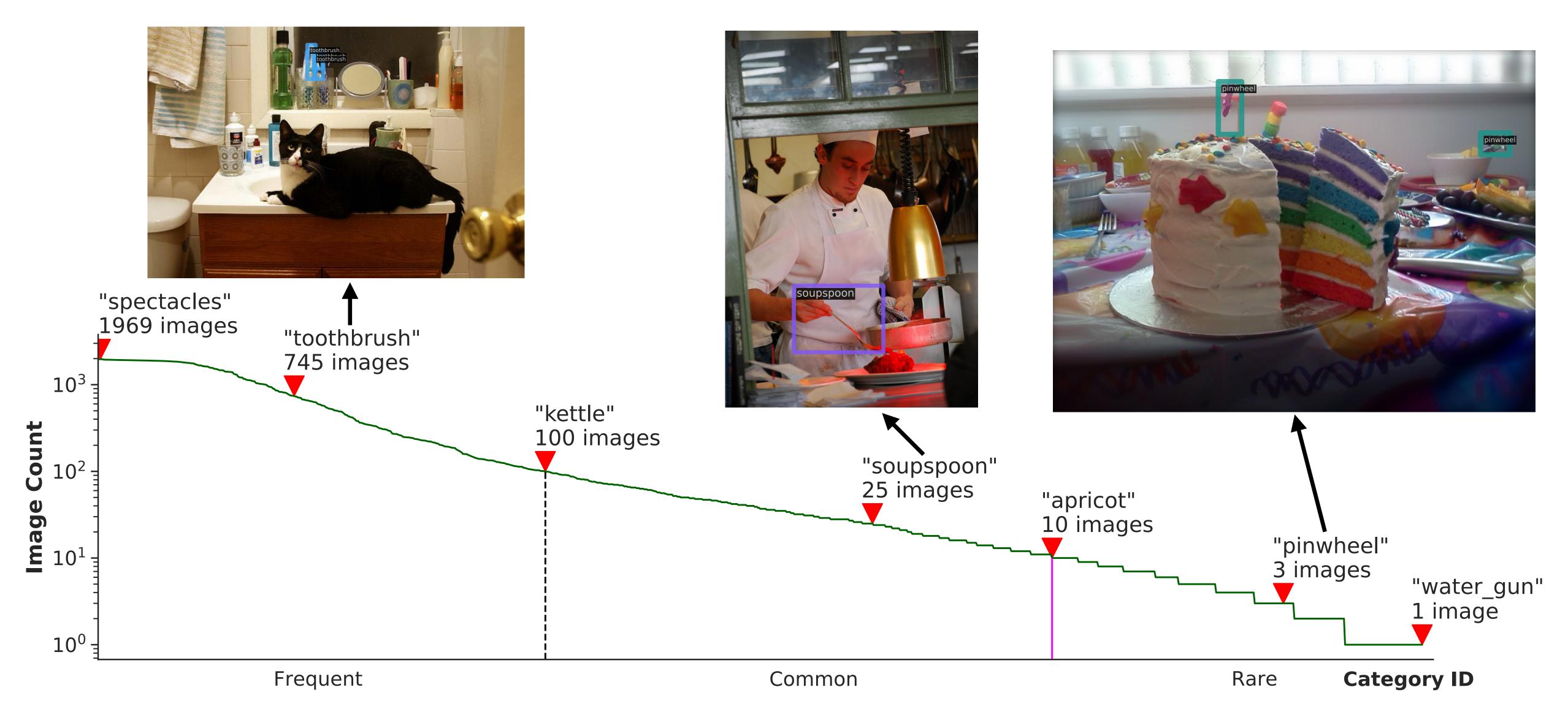
Outline

- 1. The Natural Long-Tailed Distribution
- 2. The Devil Is in the (De)Tail
- 3. Robust Performance Without Extra Labels

The Long-Tailed Distribution in Natural Scenes



The Long-Tailed Distribution in Natural Scenes



LVIS: A Dataset for Large Vocabulary Instance Segmentation. Gupta et al., CVPR 2019.

The Natural Long-Tailed Distribution

- 1. In a large and open vocabulary, many objects appear more often than others
- 2. More difficult than an *imbalanced dataset* because the "tail" distribution may consist of hundreds of rare objects having as few as a single exemplar
- 3. The long tail of rare objects follows the Zipf distribution and is *inescapable*; collecting more images simply uncovers previously unseen rare categories

The Devil Is in the (De) Tail

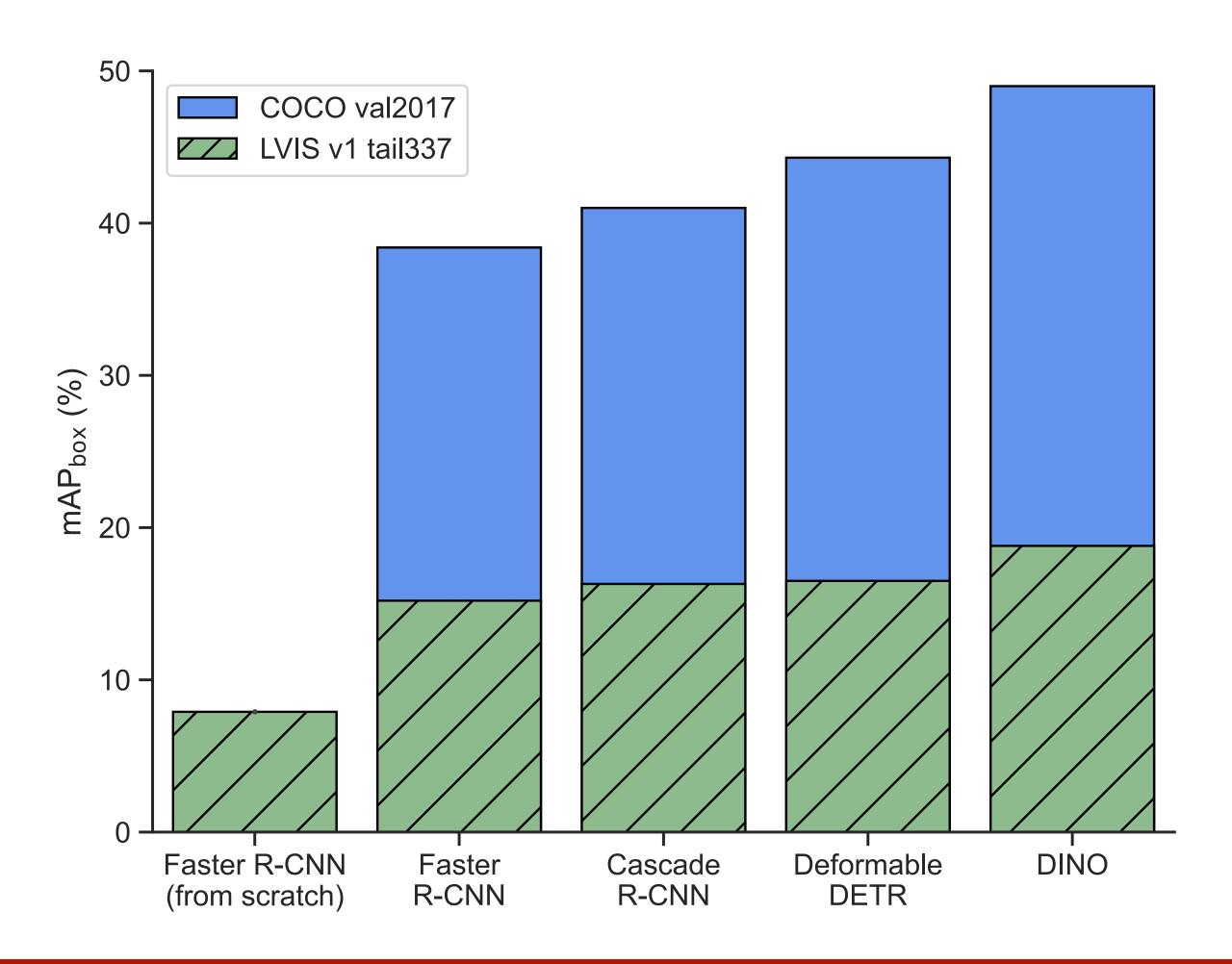
How to Detect Genuinely Rare Objects?

Researchers have spotted a rare humpback anglerfish, a species known to live in the darkness of the deep sea, off the coast of Tenerife in what might potentially be the first-ever sighting of this fish in broad daylight.

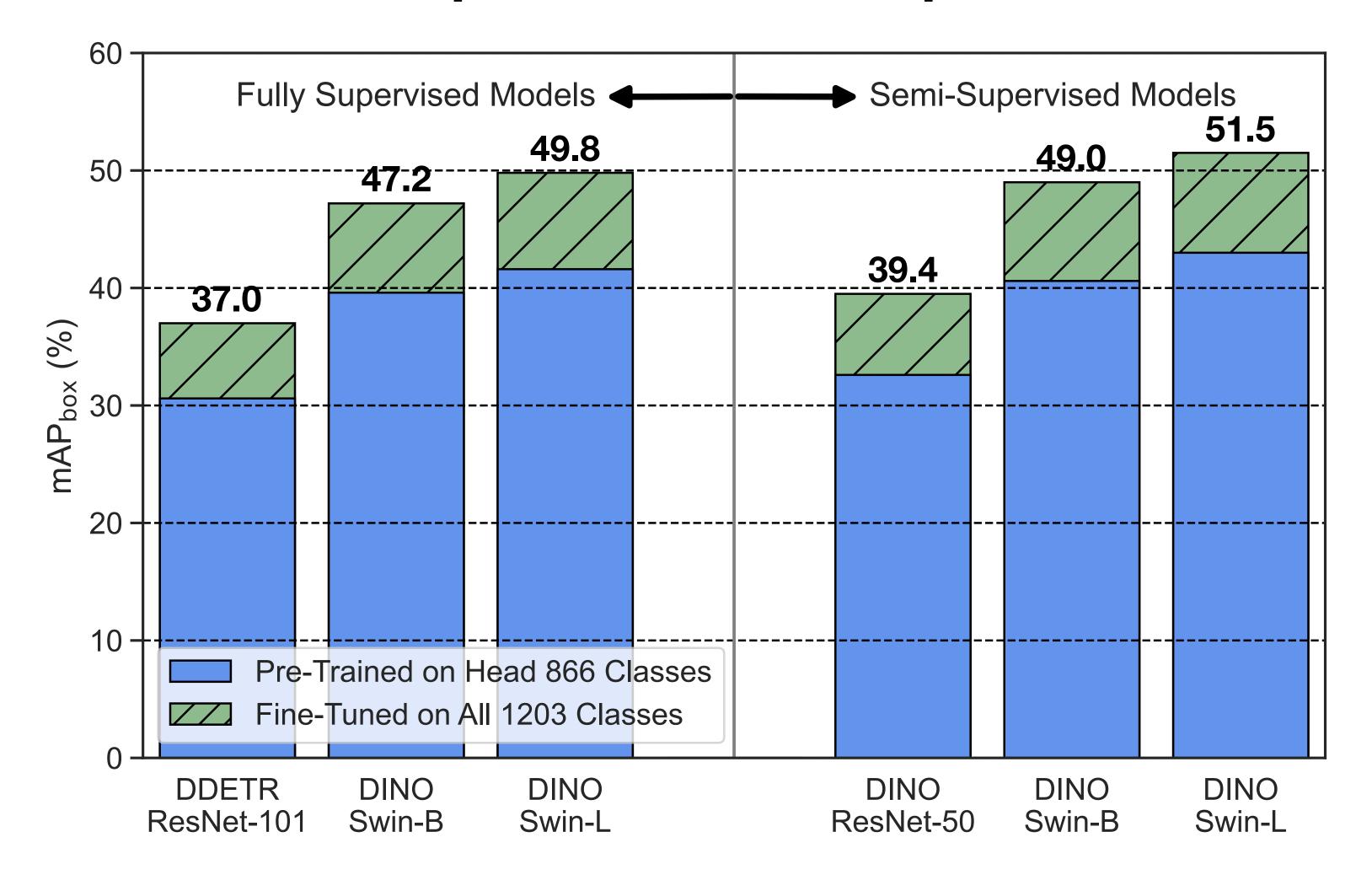
Intrinsically rare objects are strictly limited in observation and cannot be collected in more quantity from the open Internet.

broad daylight

Key Insight: Pre-Trained Representations Help

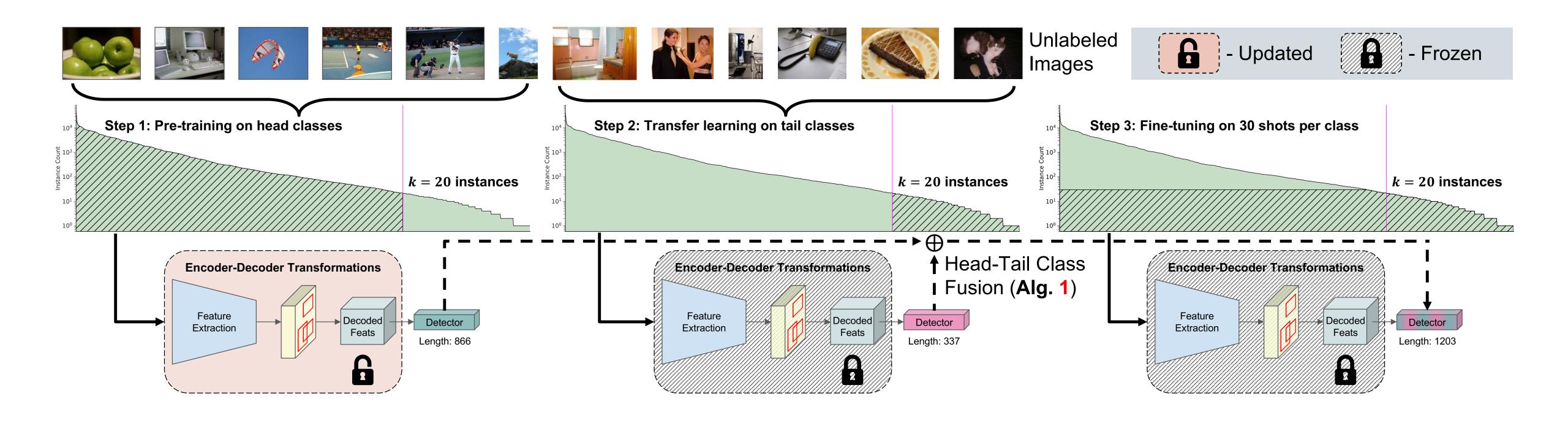


Key Insight: Pre-Trained Representations Help

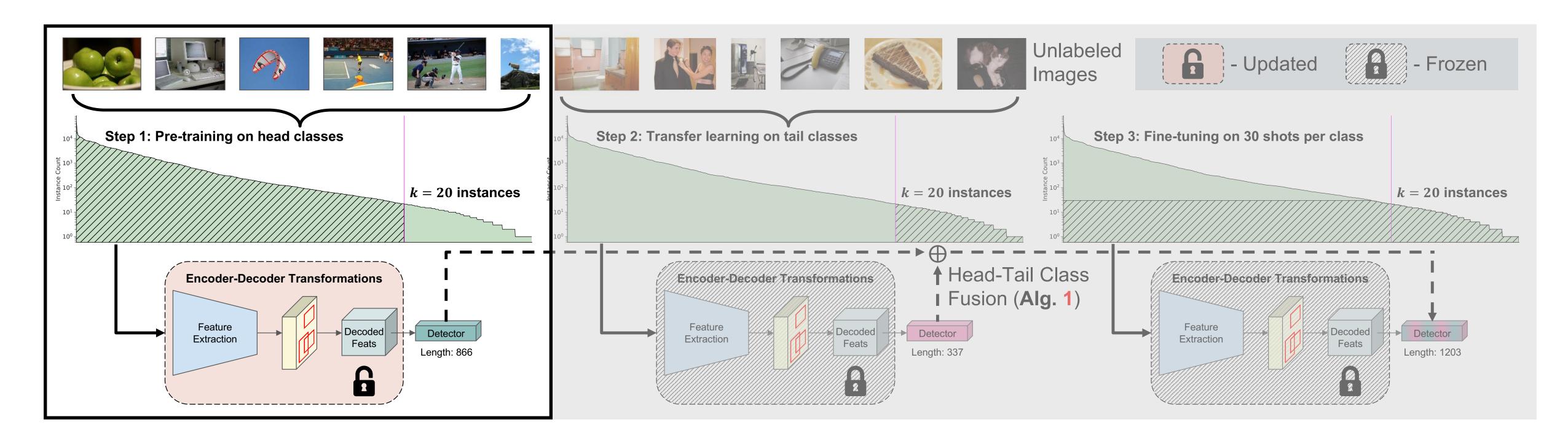


Our contribution: we find that stronger pre-trained head models (solid blue bars) are more effective long-tailed detectors (hatched green bars) across both supervised and semi-supervised settings

Our 3-Step Approach: Improved Head-to-Tail Model Transfer

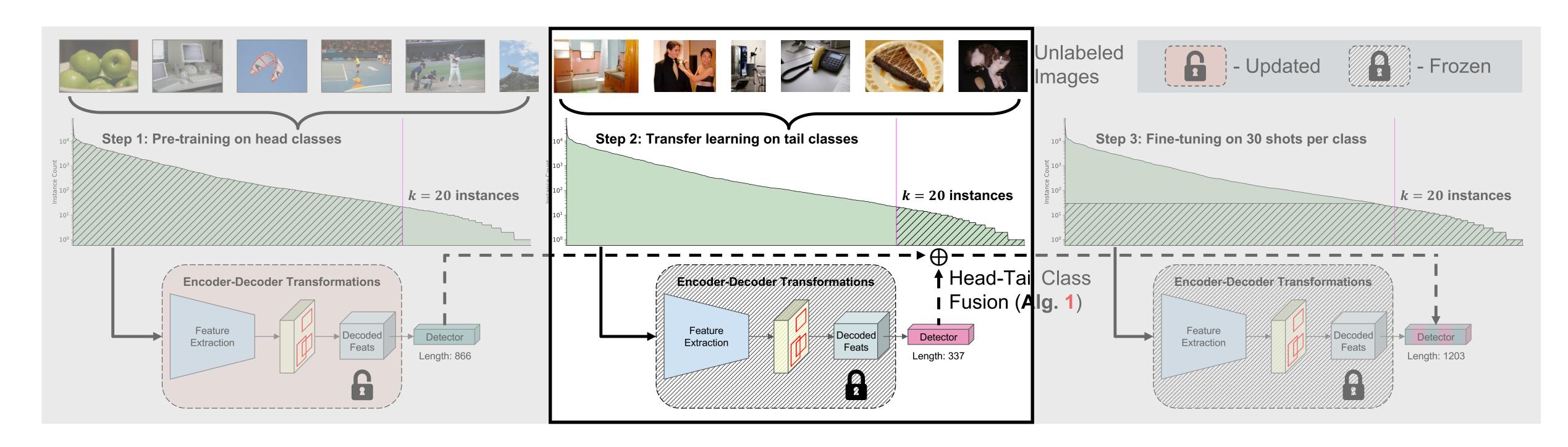


Step 1: Pre-Training on "Head" Classes



- Fully supervised pre-training with labeled examples
- Semi-supervised pre-training with both labeled and available unlabeled examples

Step 2: Transfer Learning on "Tail" Classes



- Instantiate the tail models by copying the head representations
- Freeze the pre-trained head representations except the detector
- Perform transfer learning on tail classes with optional unlabeled images

Step 2: Head-Tail Class Fusion

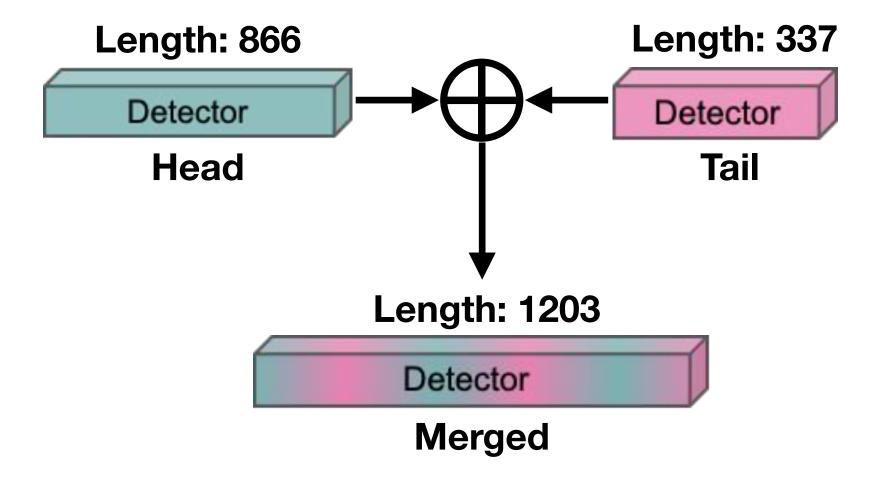
At this stage, we have two separate models with a shared representation

- One model optimized for accuracy on head classes
- The other optimized for accuracy on tail classes
- We wish to unify the two models into one for efficient single-pass inference on test samples containing both head and tail classes

Algorithm 1 PyTorch Pseudocode for Head-Tail Class Fusion.

```
# HEAD_IDS : sorted list of head IDs, length 866
# TAIL_IDS : sorted list of tail IDs, length 337
# head_ckpt: model checkpoint on head classes
# tail_ckpt: model checkpoint on tail classes
ALL_IDS = sorted(HEAD_IDS + TAIL_IDS) # length 1203
ID2LABEL =
   ID: label for label, ID in enumerate (ALL_IDS)
} # mapping from category ID to integer label
head_det = head_ckpt["state_dict"]["detector"]
tail_det = tail_ckpt["state_dict"]["detector"]
fused_det = torch.randn(len(ALL_IDS))
for label, ID in enumerate (HEAD_IDS):
   fused_det[ID2LABEL[ID]] = head_det[label]
for label, ID in enumerate(TAIL_IDS):
   fused_det[ID2LABEL[ID]] = tail_det[label]
head_ckpt["state_dict"]["detector"] = fused_det
torch.save(head_ckpt, save_filename) # to fine-tune
```

Step 2: Head-Tail Class Fusion

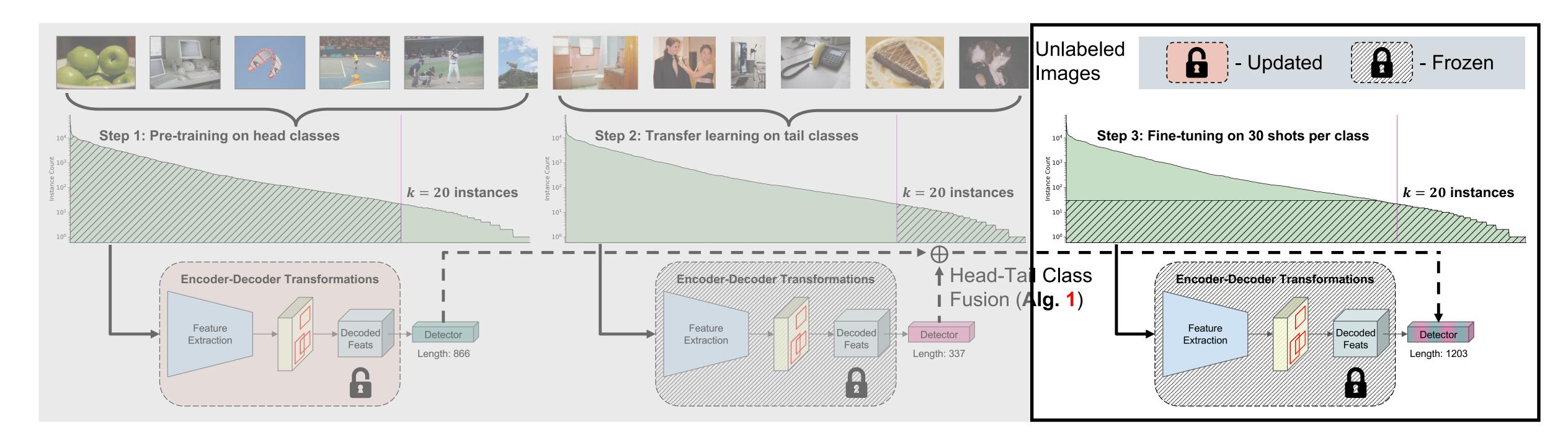


Algorithm 1 PyTorch Pseudocode for Head-Tail Class Fusion.

```
# HEAD_IDS : sorted list of head IDs, length 866
# TAIL_IDS : sorted list of tail IDs, length 337
# head_ckpt: model checkpoint on head classes
# tail_ckpt: model checkpoint on tail classes
ALL_IDS = sorted(HEAD_IDS + TAIL_IDS) # length 1203
ID2LABEL =
   ID: label for label, ID in enumerate (ALL_IDS)
} # mapping from category ID to integer label
head_det = head_ckpt["state_dict"]["detector"]
tail_det = tail_ckpt["state_dict"]["detector"]
fused_det = torch.randn(len(ALL_IDS))
for label, ID in enumerate (HEAD_IDS):
   fused_det[ID2LABEL[ID]] = head_det[label]
for label, ID in enumerate(TAIL_IDS):
   fused_det[ID2LABEL[ID]] = tail_det[label]
head_ckpt["state_dict"]["detector"] = fused_det
```

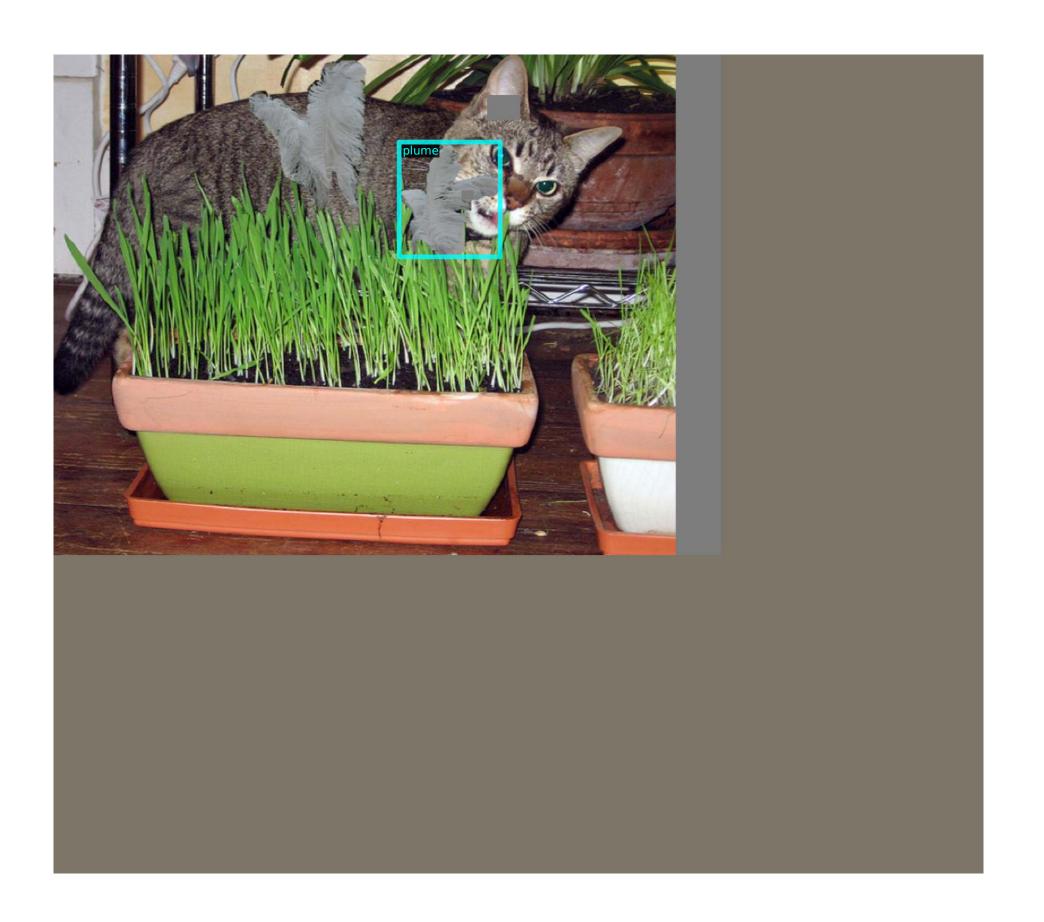
torch.save(head_ckpt, save_filename) # to fine-tune

Step 3: Fine-Tuning on a Balanced Sample of Head and Tail Classes

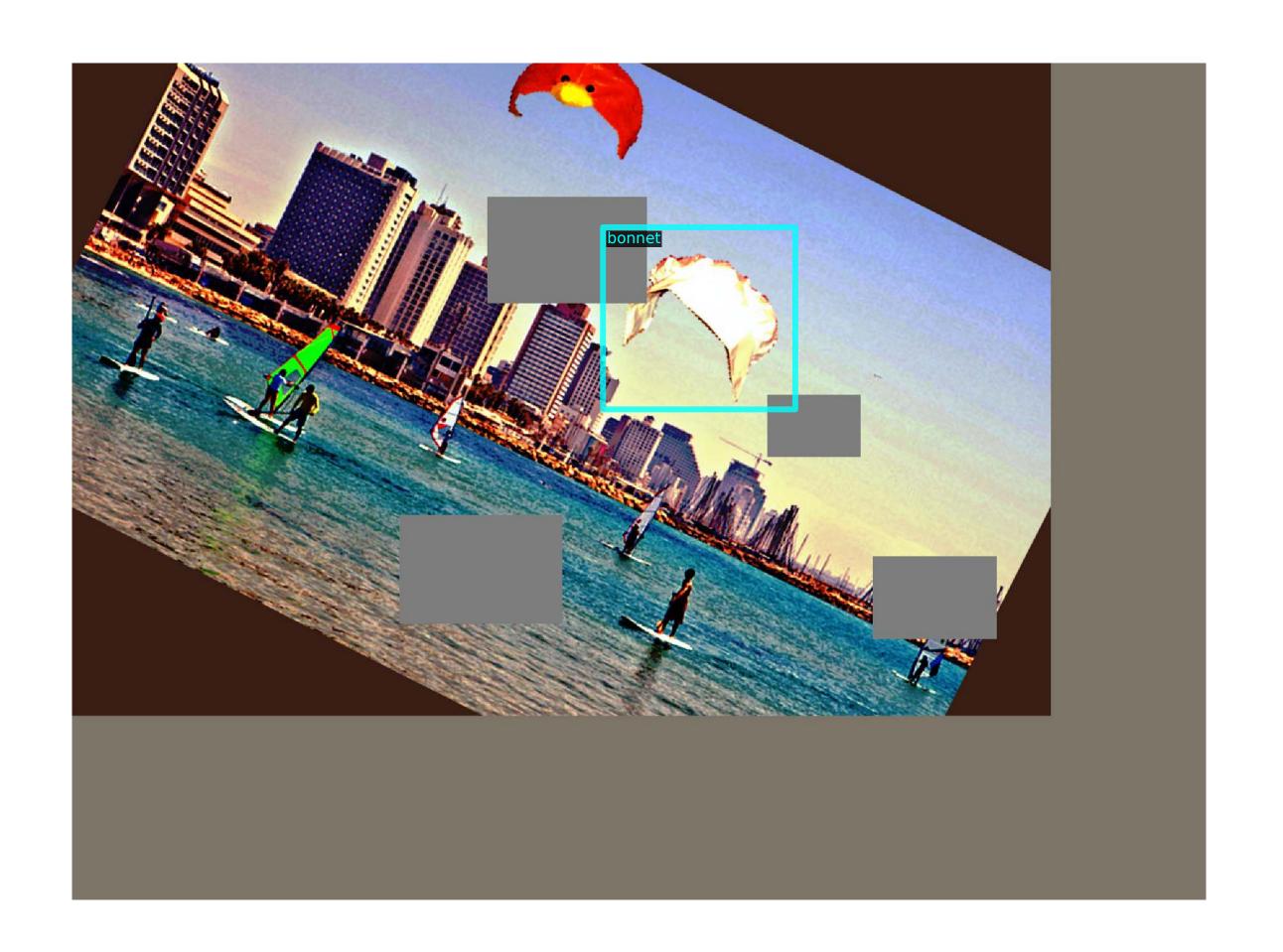


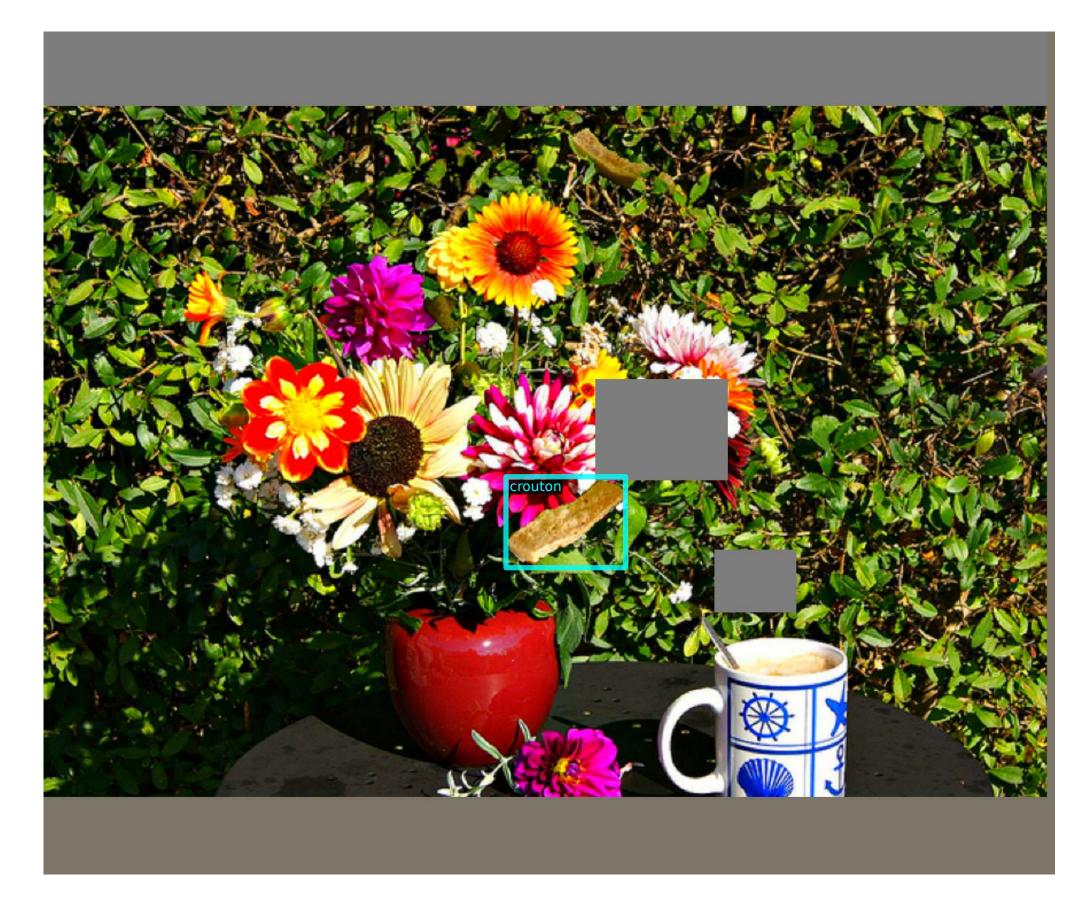
- Keep the pre-trained head representations frozen
- Fine-tune only the detector with a reduced learning rate to avoid catastrophic forgetting

What About the Intrinsically Rare Objects?

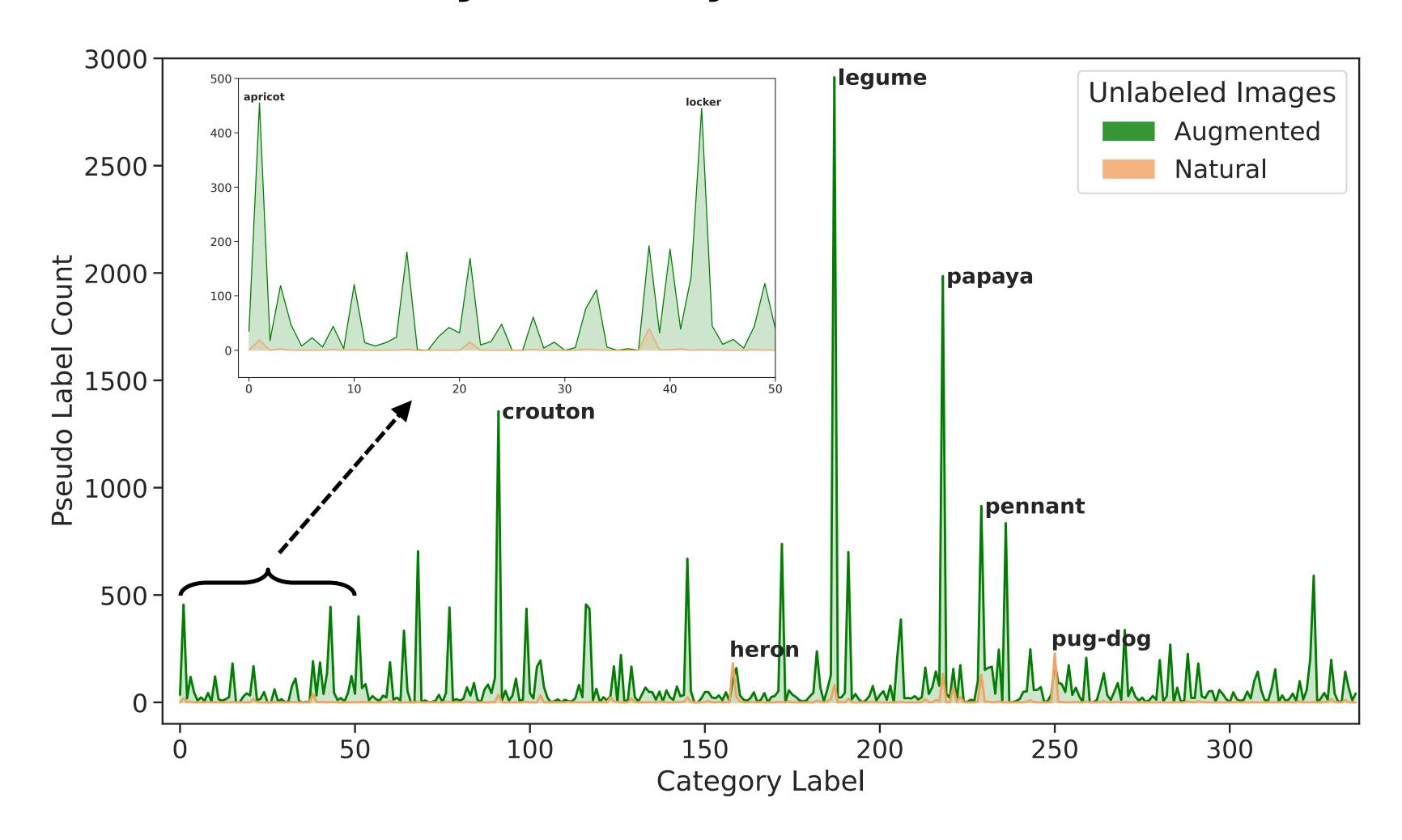


What About the Intrinsically Rare Objects?

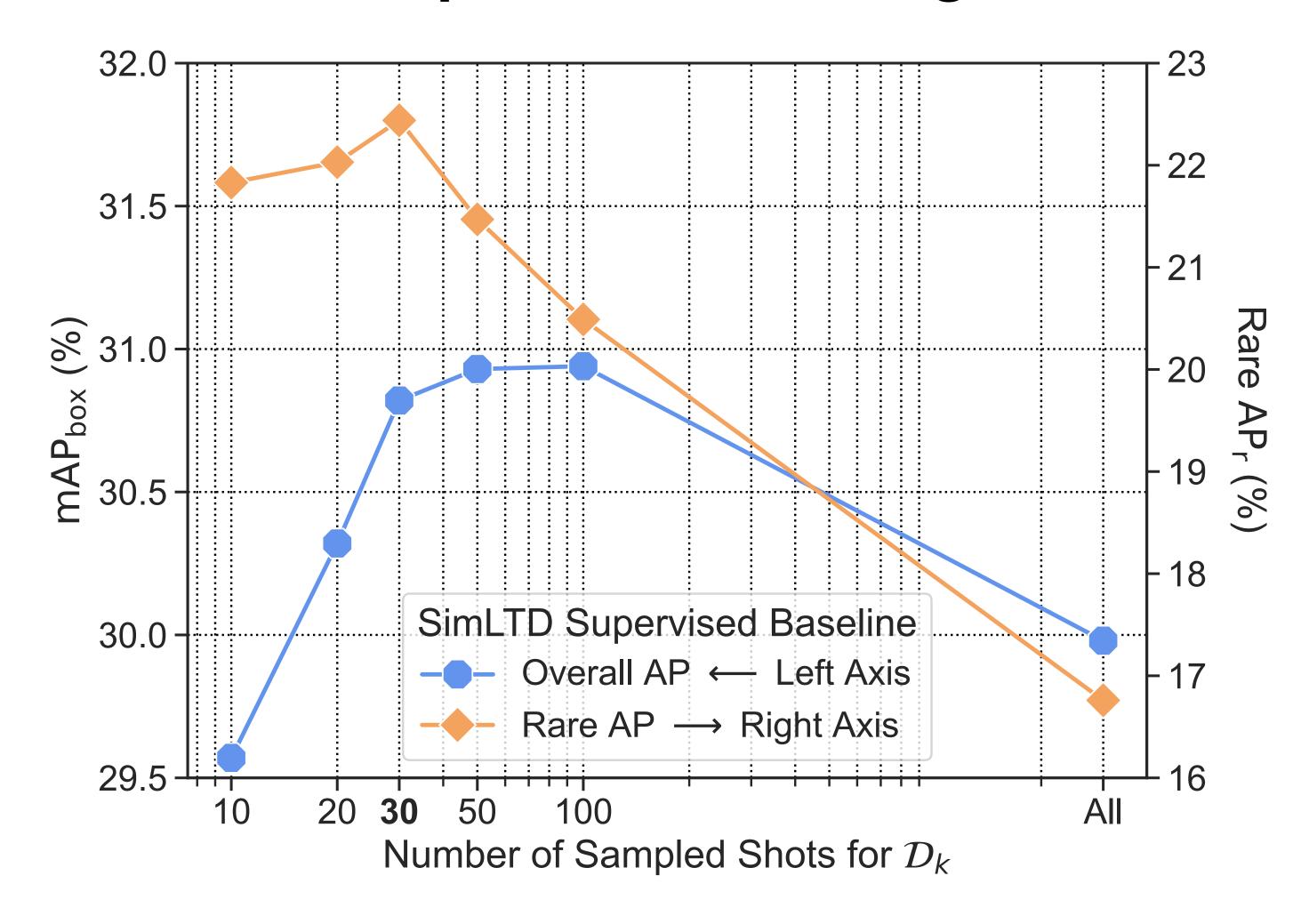




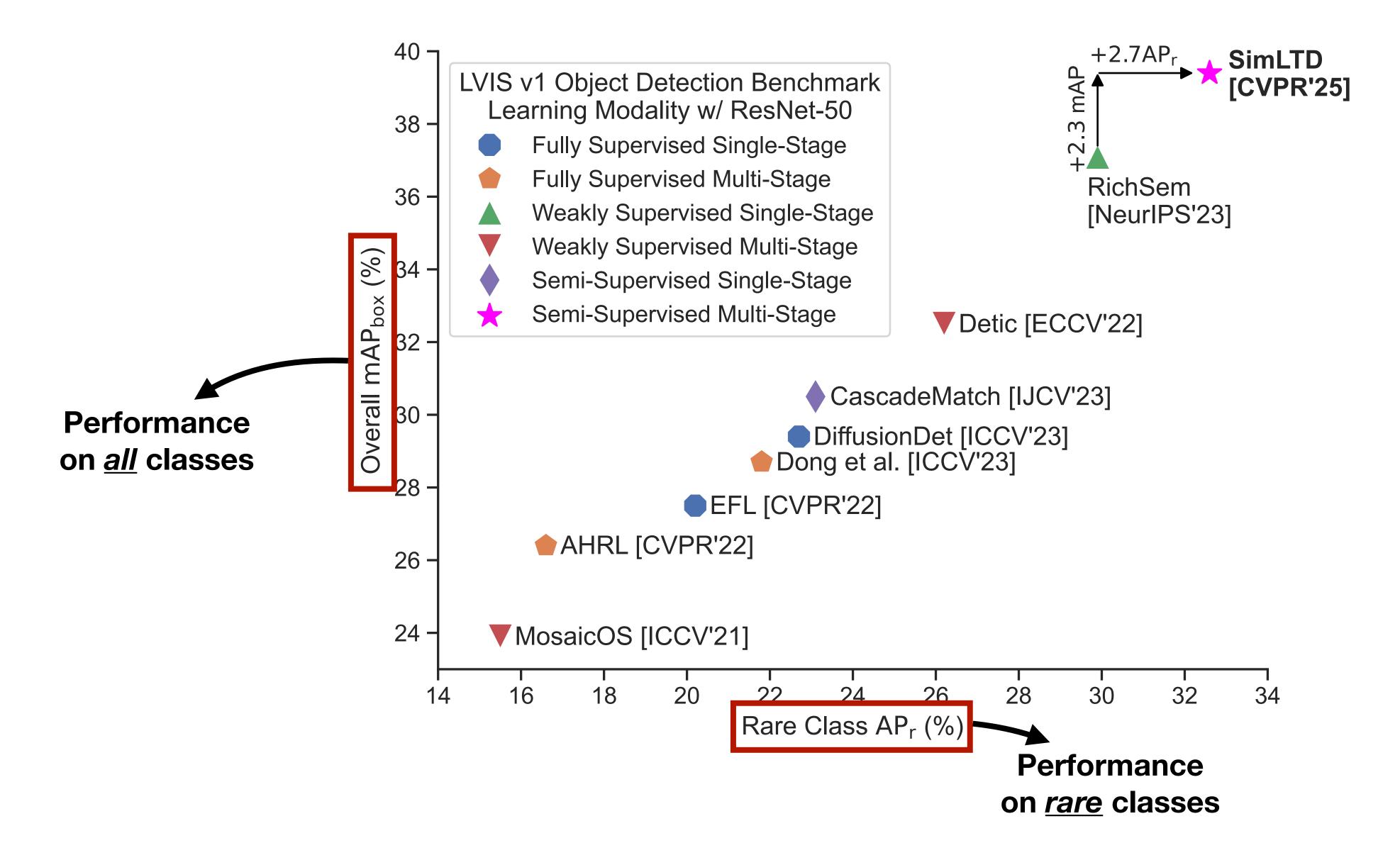
What About the Intrinsically Rare Objects?



How Many Instances to Sample for Fine-Tuning?

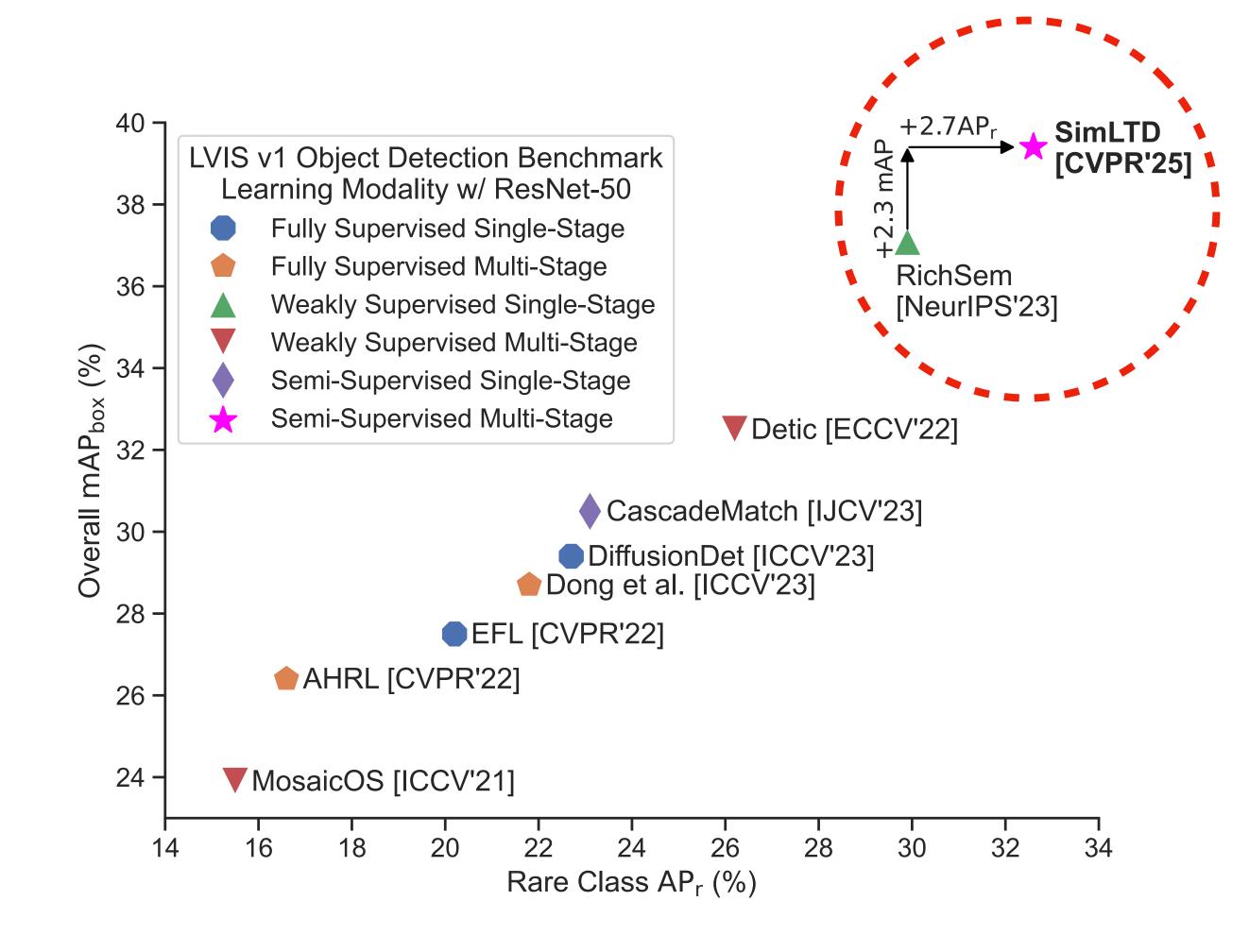


Advancing Long-Tailed Detection Without Extra Labels

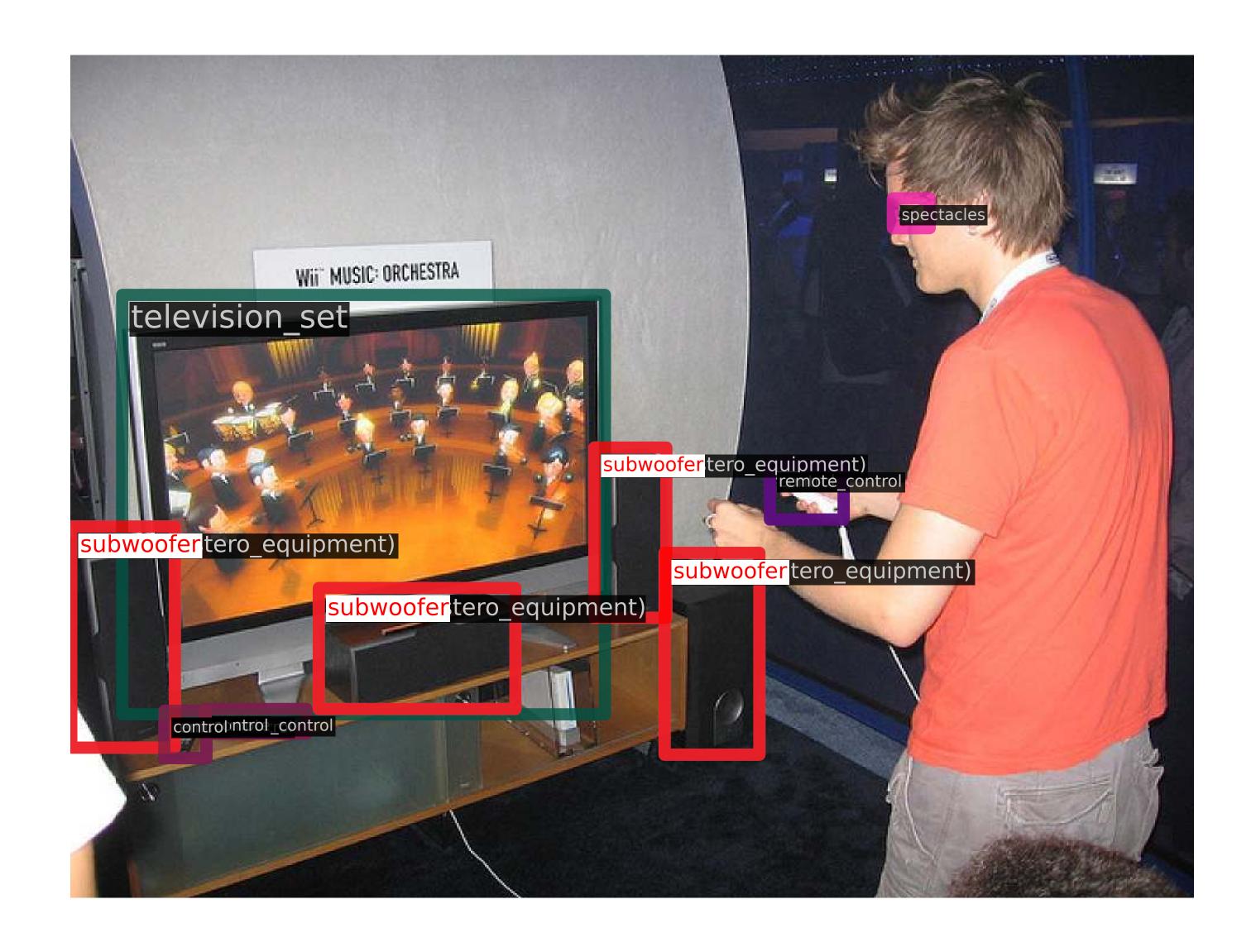


Advancing Long-Tailed Detection Without Extra Labels

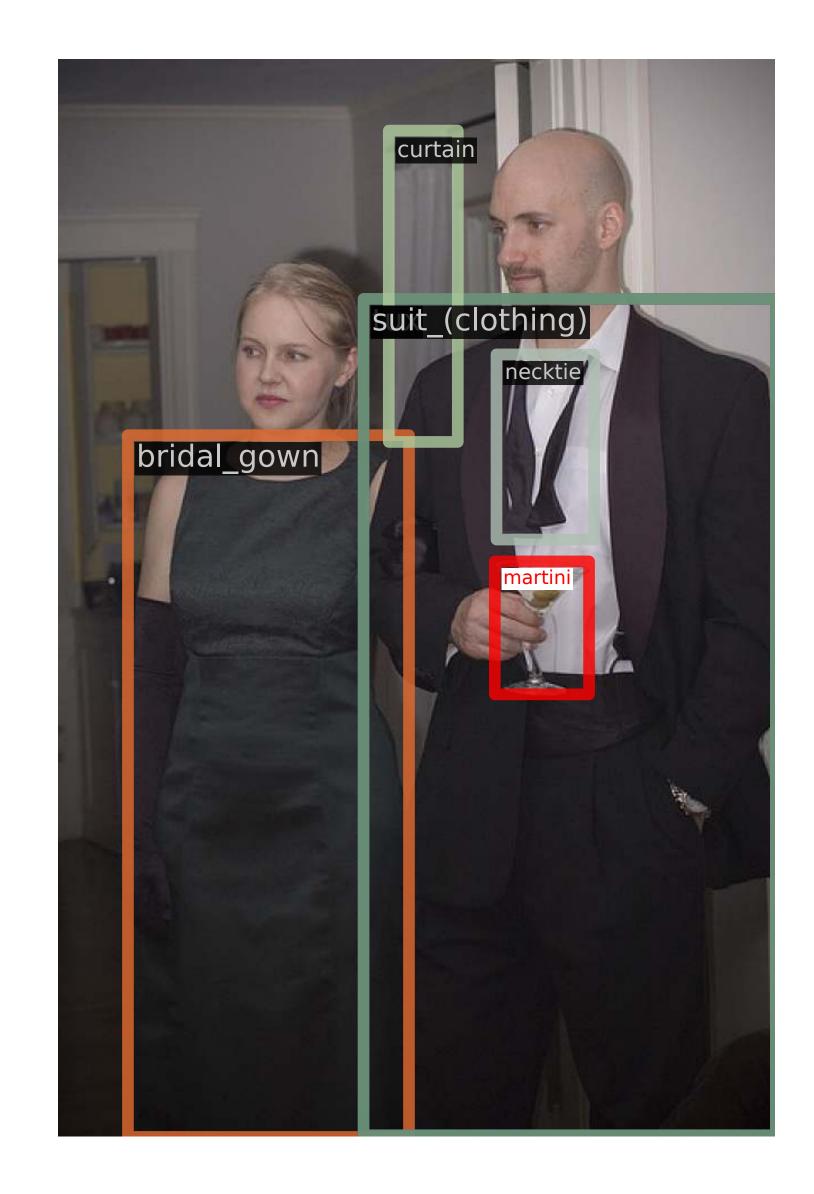
- X Fully supervised methods have limited performance without extra data
- X Weakly supervised methods require extra data with whole-image labels
- Our semi-supervised method leverages extra unlabeled images in the wild
- **Benefit:** Unlabeled images are easy to collect without the burden of human annotations

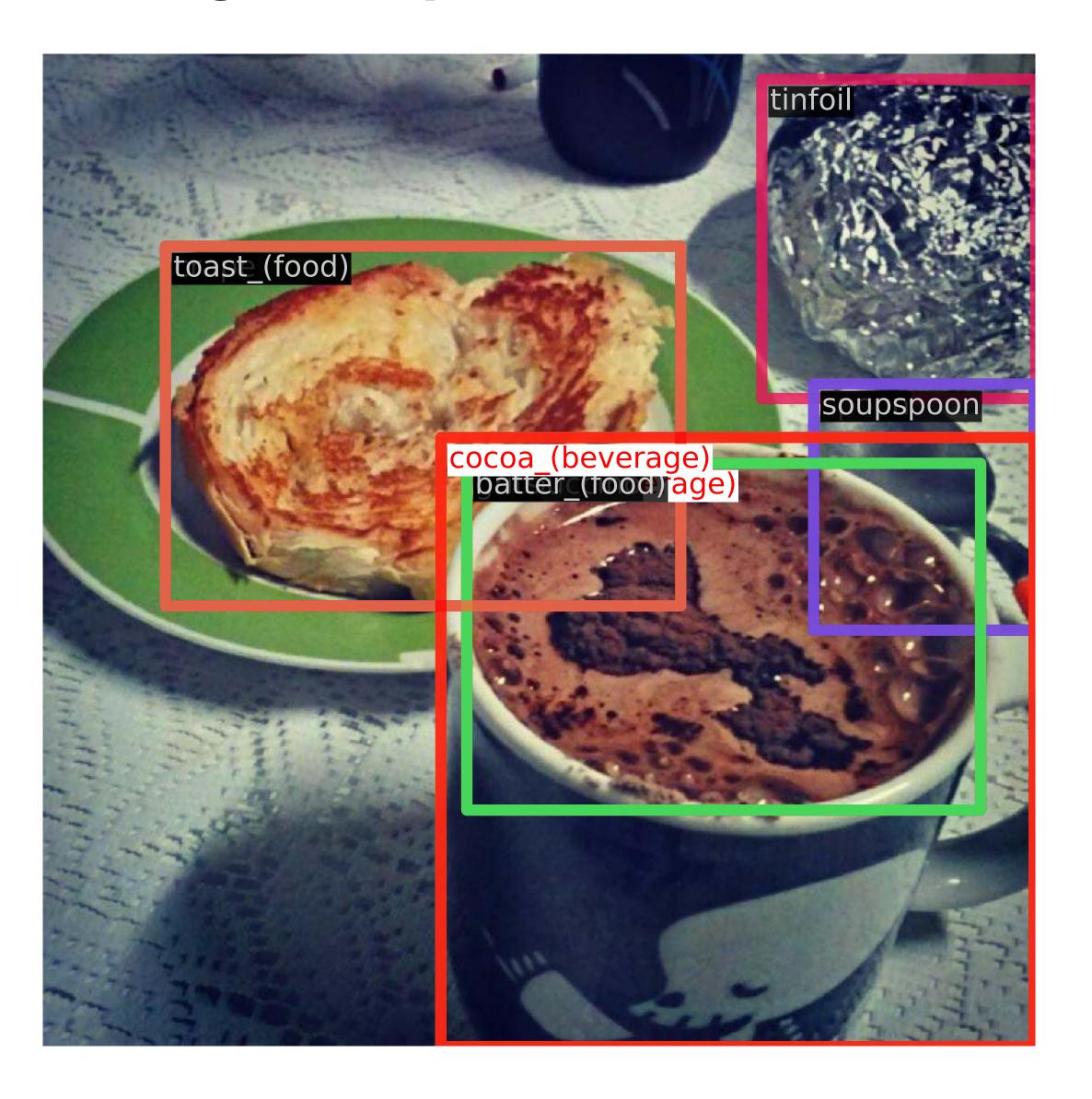


Robust Detection With a *Single* Training Exemplar (Red/White Box)

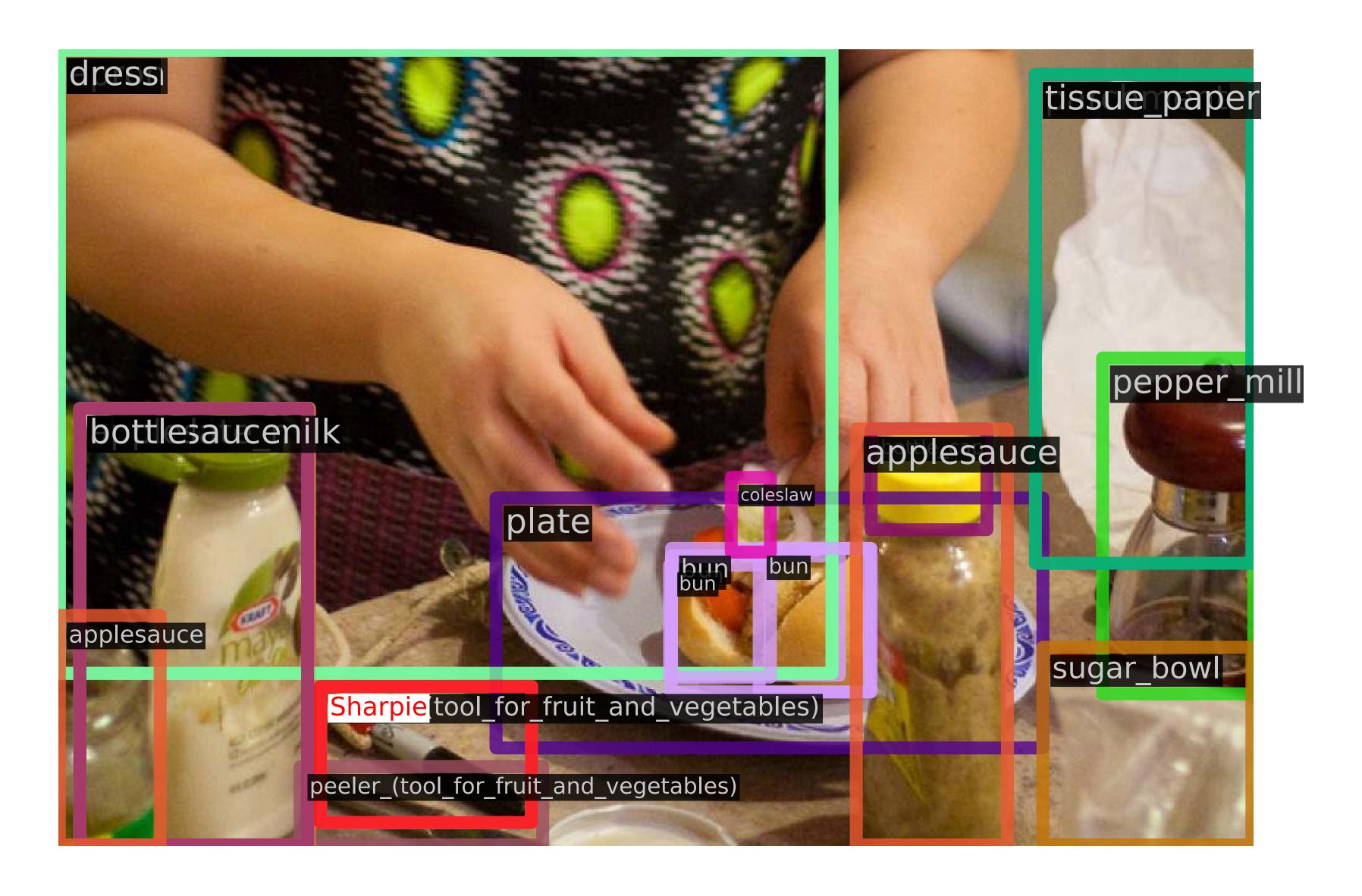


Robust Detection With *Three* Training Exemplars (Red/White Box)





Robust Detection With *Five* Training Exemplars (Red/White Box)



Robust Long-Tailed Detection Without Extra Image-Level Supervision

