

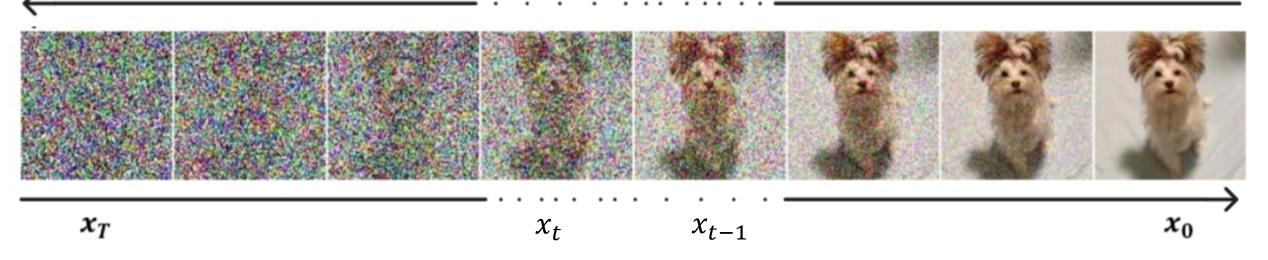
One-Way Ticket: Time-Independent Unified Encoder for Distilling Text-to-Image Diffusion Models

Senmao Li

Background: Visual Generation

Image and Video Generation

stability.ai

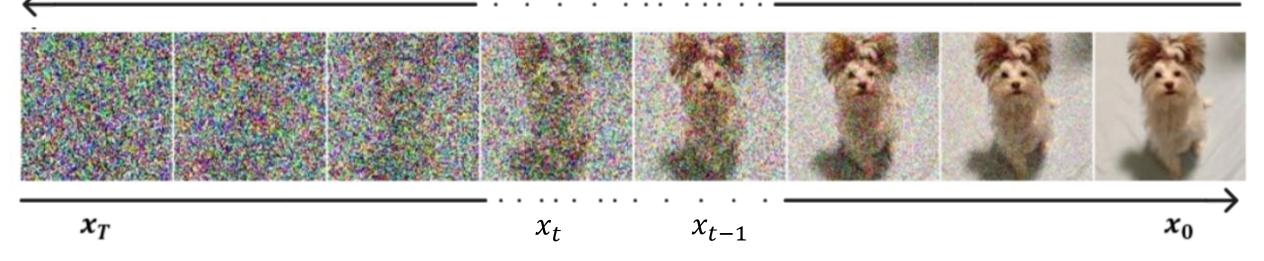

Stable Diffusion 3

Diffusion Models

Training/Add noise

DDPM:
$$\mathbf{x}_{t-1} = \frac{1}{\sqrt{\alpha_t}} \left(\mathbf{x}_t - \frac{1-\alpha_t}{\sqrt{1-\bar{\alpha}_t}} \boldsymbol{\epsilon}_{\theta}(\mathbf{x}_t, t) \right) + \sigma_t \mathbf{z}$$

1000 steps


Sample/denoise

Diffusion Models

Training/Add noise

DDPM:
$$\mathbf{x}_{t-1} = \frac{1}{\sqrt{\alpha_t}} \left(\mathbf{x}_t - \frac{1-\alpha_t}{\sqrt{1-\bar{\alpha}_t}} \boldsymbol{\epsilon}_{\theta}(\mathbf{x}_t, t) \right) + \sigma_t \mathbf{z}$$
 1000 steps

Sample/denoise

DDIM:
$$x_{t-1} = \sqrt{\frac{\alpha_{t-1}}{\alpha_t}} x_t + \sqrt{\alpha_{t-1}} \left(\sqrt{\frac{1}{\alpha_{t-1}} - 1} - \sqrt{\frac{1}{\alpha_t} - 1} \right) \cdot \epsilon_{\theta}(x_t, t, c)$$
 50 steps

◆ Diffusion Models —— Efficiency Latency Challenge

SD 512x512 in RTX3090

(DDPM 1000 steps): 37.6s

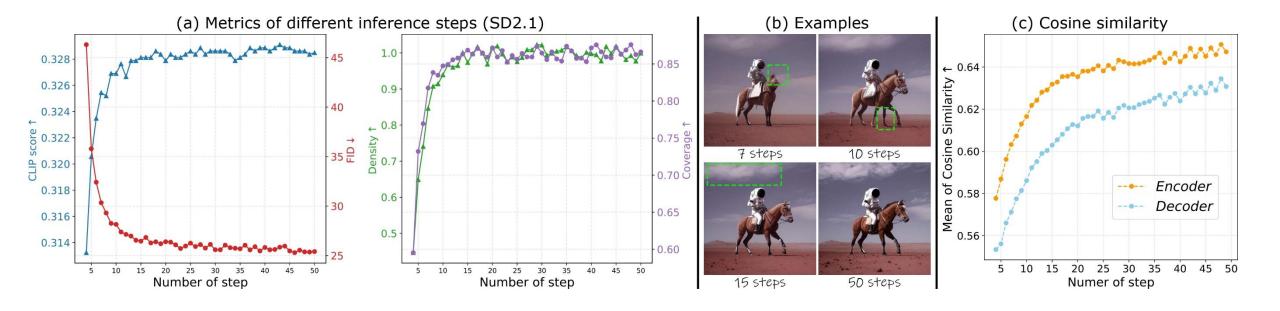
(DDIM 50 steps): 2.5s

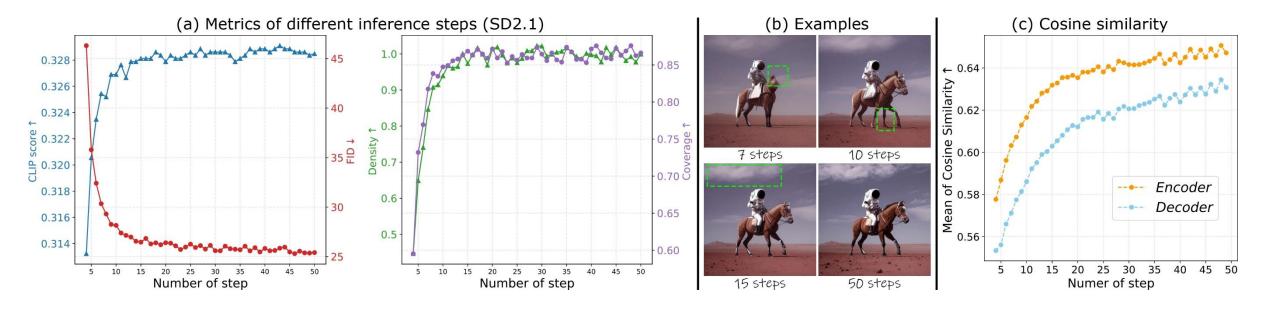
Wan2.1 820x480 in A6000

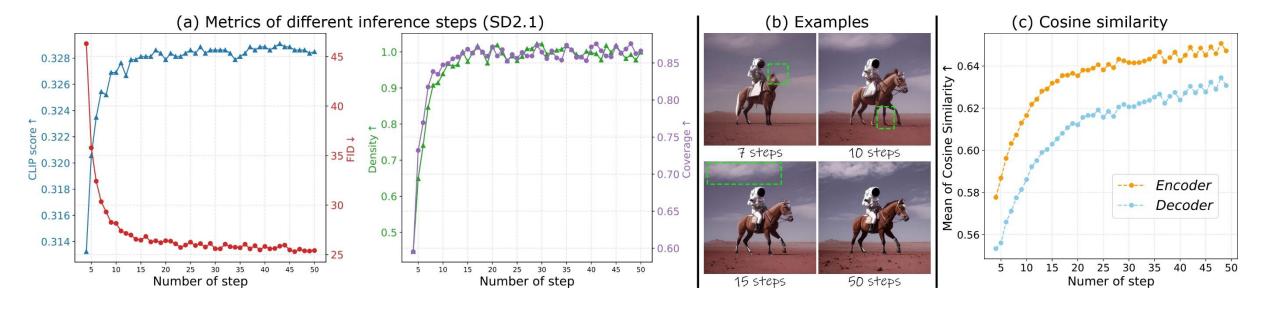
(DDIM 50 steps): 352s

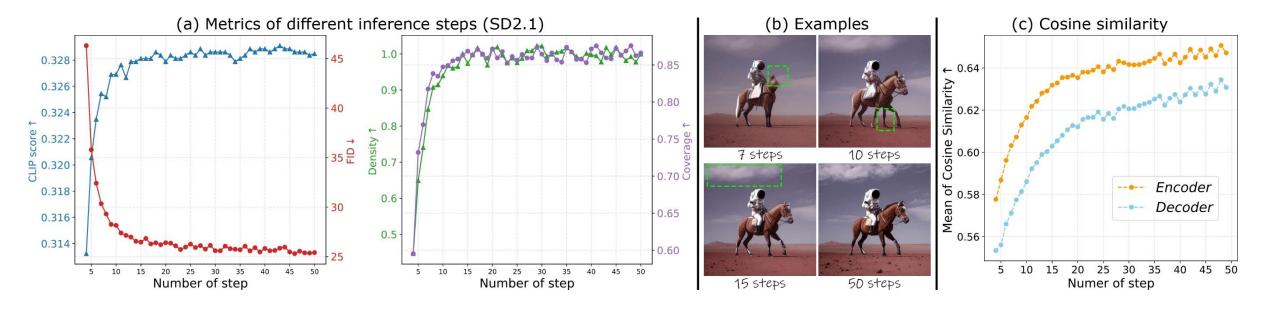
◆ Diffusion Models —— Efficiency Latency Challenge

SD 512x512 in RTX3090 (DDPM 1000 steps): 37.6s

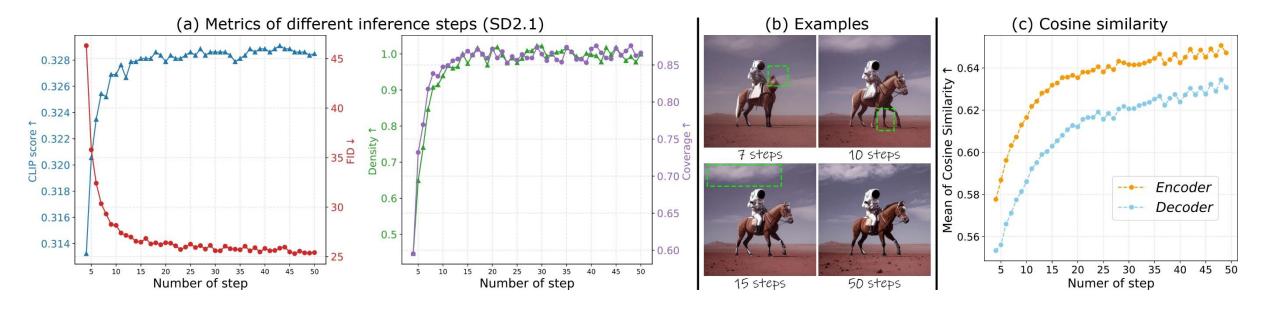

Wan2.1 820x480 in A6000 (DDIM 50 steps): 352s


GANs 512x512 (1 step): 0.02s

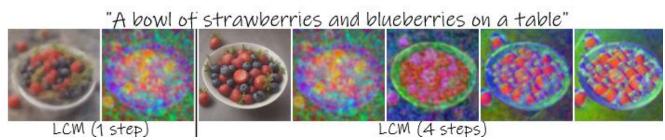


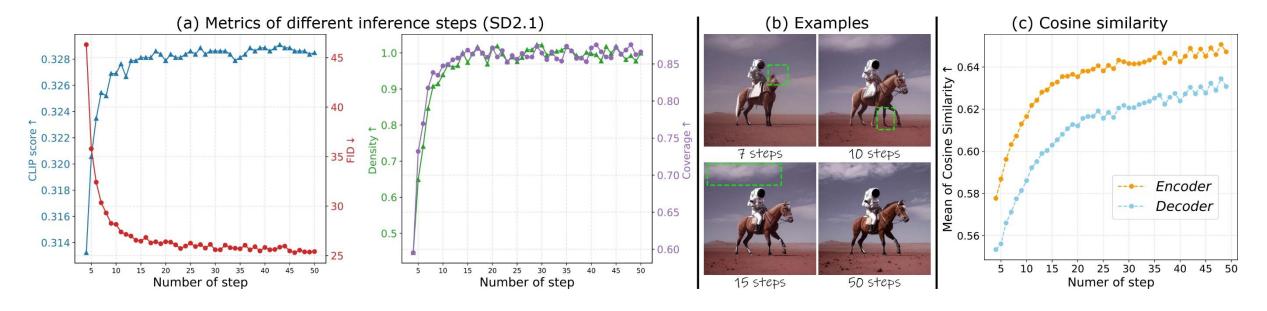


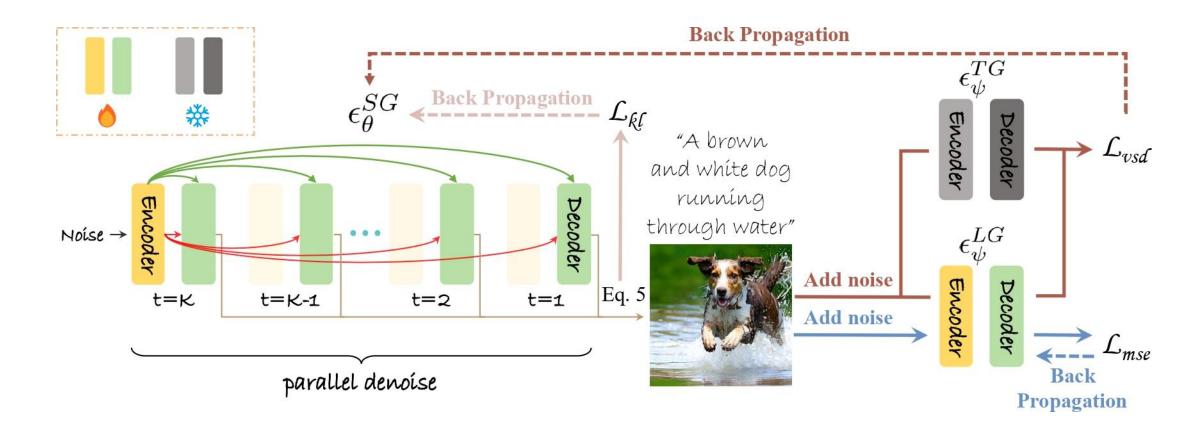
Above a certain threshold of steps, such as 15 steps in SD2.1, the model maintains image generation quality (Fig.a-b) while the features show high similarity (Fig.c).



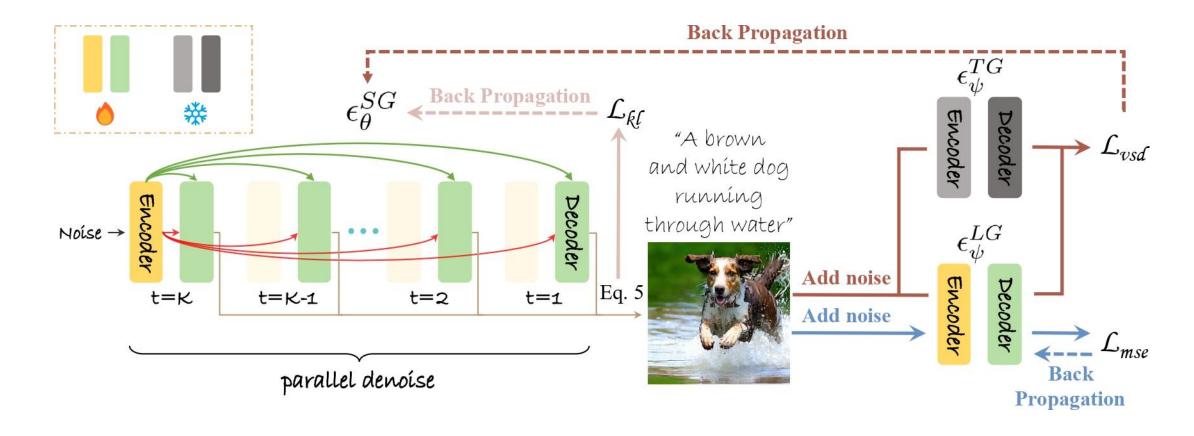
- Above a certain threshold of steps, such as 15 steps in SD2.1, the model maintains image generation quality (Fig.a-b) while the features show high similarity (Fig.c).
- **Below this threshold**, feature similarity deteriorates along with worse generation quality, accompanied by a degradation in image generation quality as sampling steps reduce.



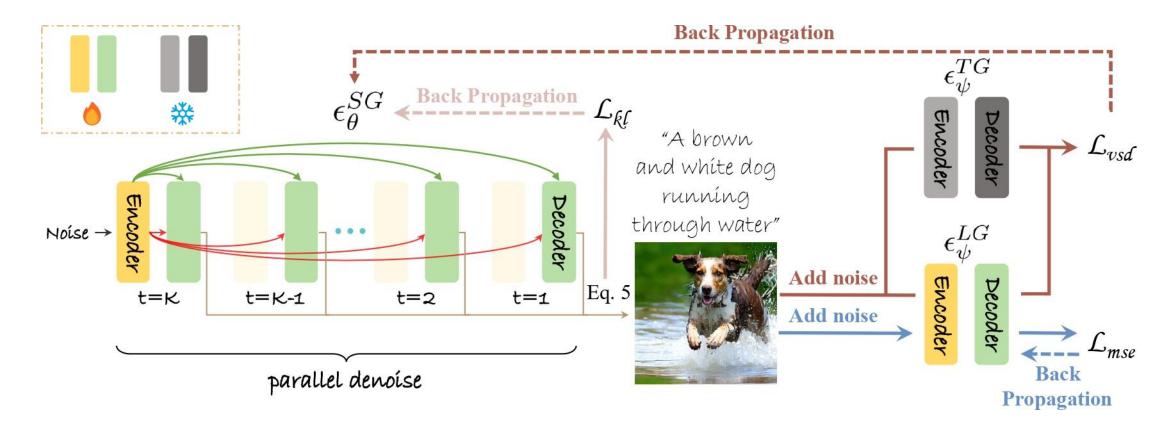

- Above a certain threshold of steps, such as 15 steps in SD2.1, the model maintains image generation quality (Fig.a-b) while the features show high similarity (Fig.c).
- **Below this threshold**, feature similarity deteriorates along with worse generation quality, accompanied by a degradation in image generation quality as sampling steps reduce.



- Above a certain threshold of steps, such as 15 steps in SD2.1, the model maintains image generation quality (Fig.a-b) while the features show high similarity (Fig.c).
- **Below this threshold**, feature similarity deteriorates along with worse generation quality, accompanied by a degradation in image generation quality as sampling steps reduce.



- Above a certain threshold of steps, such as 15 steps in SD2.1, the model maintains image generation quality (Fig.a-b) while the features show high similarity (Fig.c).
- **Below this threshold**, feature similarity deteriorates along with worse generation quality, accompanied by a degradation in image generation quality as sampling steps reduce.
- Furthermore, the encoder features consistently exhibit higher similarity than the decoder across all sampling steps (Fig.c).


Hence, we use a novel design with 1-step encoder and a 4-step decoder (Time-independent Unified Encoder architecture), achieving near 1-step inference. Since the 4-step decoder captures richer semantics, ours aligns the generation quality with multi-step DMs.

Method

- Existing 1-step distillation models completely **break away from** the iterative denoising process characteristic of diffusion models.
- Existing 4-step distillation models demonstrate significantly **lower sampling efficiency** compared to 1-step models.

$$\nabla_{\theta} \mathcal{L}_{VSD} = \mathbb{E}_{t,\epsilon} \left[w(t) (\epsilon_{\psi}(x_t, t, y) - \epsilon_{\phi}(x_t, t, y)) \frac{\partial g(\theta)}{\partial \theta} \right]$$

$$\mathcal{L}_{KL} = [\mathcal{D}_{KL}(\epsilon_{\theta}^{SG}(\boldsymbol{\epsilon}, T_1, t, \boldsymbol{y}) || \mathcal{N}(0, I))],$$

$$\min_{\epsilon_{\phi}} \mathbb{E}_{t,\epsilon} \underbrace{\|\epsilon_{\phi}(x_t, t, y) - \epsilon\|_2^2}_{\mathcal{L}_{mse}}$$

Dataset	Race	Sten	Param		CC	OCO2014-3	CO2014-30K			COCO2017-5K					Inference↓		Training Data	
Metrics Method	Model		1 arain		CLIP†	Precision1	Recall†	F1↑	FID↓	CLIP↑	Precision ↑	Recall†	F1↑	Time (ms)	Memory (GB)	Size↓	Image Free	A100 Days↓
SD1.5 [58] (cfg=7.5) [†] SD1.5 [58] (cfg=4.5) [†] SD2.1 [58] (cfg=7.5) [†] SD2.1 [58] (cfg=4.5) [†]	- - -	50 50 50 50	860M 860M 865M 865M	9.90 16.10 12.22	0.325 0.322 0.328 0.325	0.717 0.727 0.723 0.734	0.585 0.489 0.526	0.648 0.583 0.614	25.40 22.24	0.323 0.328	0.776 0.764 0.769 0.788	0.649 0.561	0.702 0.649	2503.0 2503.0 2244.2 2244.2	4.04 3.89	5B 5B 5B 5B	X X X	4783 4783 8332 8332
GigaGAN [26]*	GAN	1	1.0B		0.325		0.547			_	<u> </u>	-	-	_	_	2.7B	X	6250
InstaFlow [40] [†] LCM [44] [†]	SD1.5	1	0.9B 860M		0.288		$\frac{0.521}{0.194}$		19.00 143.73		0.729 0.118	$\frac{0.613}{0.291}$			3.99 5.88	3.2M 12M	X	183.2
SD-Turbo [64] [†] SwiftBrush [53] [†] SwiftBrushv2 [7] [‡]	SD2.1	1 1 1	865M 865M 865M	17.20	0.301	0.672	0.458 0.458 0.457	0.545	27.18	0.314	0.786 0.729 0.816		0.612		3.86 3.85 4.91	unk. 1.4M 1.4M	X ./ ./	unk. 4.1 24.1
LCM [44] [†] SD-Turbo [64] [†]	SD1.5 SD2.1		860M 865M				0.346			0.303 0.335	0.713 0.694	0.460		592.3 272.2	5.88 3.86	12M unk.	X	1.3 unk.
Ours	SD2.1	1	865M	13.09	0.313	0.634	0.622	0.628	<u>23.11</u>	0.313	0.697	0.668	0.682	164.7	4.98	1.4 M	✓	3.9

Table 1. Comparison of our distillation method against other works. Inference Time (ms) and Memory (GB). † indicates that we report results using the provided official code and pretrained models. ‡ denotes that we re-implemented the work and are providing the scores. * indicates that we report results using the provided generated images. "unk." denotes unknown. The best and second-best scores are highlighted in **bold** and underlined, respectively, with both the parameter count and training data size being below the billion level.

Dataset	Base	Step	AFHQ				CelebA-	-HQ		DrawBe	nch	PartiPrompts			Training Data
Metrics Method	Model	odel	FID↓	Density†	Coverage	FID↓	Density	†Coverage↑	FID↓	Density1	Coverage1	FID↓	Density†	Coverage1	Image Free
SD1.5 [58] (cfg=7.5) SD2.1 [58] (cfg=7.5)	•	50 50	47.16 51.67	0.066 0.053	0.030 0.022	93.94 89.57	0.053 0.018	0.013	11.95	0.510	0.622	7.36	0.730 1	0.887	X
InstaFlow [40] [†] LCM [44] [†]	SD1.5	1 1	51.97 155.63	0.058 0.012	$\frac{0.029}{0.033}$	131.99 165.74	!	0.007	25.08 120.98	0.223 0.058	0.337 0.014	17.64 95.65		0.670 0.072	X
SD-Turbo [64] [†] SwiftBrush [53] [†] SwiftBrushv2 [7] [‡]	SD2.1	1 1 1	77.75 67.60 64.99	0.142 0.039 <u>0.110</u>	0.033 0.014 0.025	146.22 144.03 131.89	0.014	0.006 0.002 0.012	25.75 21.48 18.57	0.597 0.402 <u>0.682</u>	0.488 0.441 <u>0.597</u>	17.40 14.43 11.32		0.775 0.737 0.865	X /
LCM [44] [†] SD-Turbo [64] [†]	SD1.5 SD2.1	4 4	78.00 77.23	0.054 0.011	0.008 0.005	122.44 193.08	1	$\frac{0.045}{0.001}$	46.23 27.80	0.183 0.281	0.187 0.371	26.84 22.84	0.512 0.500	0.575 0.648	X
Ours	SD2.1	1	54.48	0.068	0.071	116.82	0.116	0.068	21.10	0.685	0.616	16.28	0.852	0.840	✓


Table 2. Quantitative comparison of our distillation method with other approaches based on FID, Density, and Coverage metrics to assess diversity. † indicates that we report results using the provided official code and pretrained models. ‡ denotes that we re-implemented the work and are providing the scores. The best and second-best numbers are marked with **bold** and <u>underlined</u> respectively.

Both SD-Turbo and SwiftBrushv2 tend to generate results with similar scenery and style when given the same prompt, resulting in a lack of diversity

Ex

Experiments

The well-trained student model with time-steps K=4 (the second column) serves as a good starting point for students set at other time-steps (e.g., 2, 8, 16, 32, and 50)

Take Aways

- Below the step threshold (e.g., 15 steps), image quality degrades as sampling steps decrease
- Encoder features show consistently higher similarity than decoder features across all step settings
- > 1-step encoder and a 4-step decoder architecture

SoftBank

Thank you for your attention! Any Question?

Senmao Li¹, Lei Wang¹, Kai Wang², Tao Liu¹, Jiehang Xie³, Joost van de Weijer² Fahad Shahbaz Khan^{4,5}, Shiqi Yang⁶, Yaxing Wang^{1,7#}, Jian Yang¹

¹VCIP, CS, Nankai University ²Computer Vision Center, Universitat Auto noma de Barcelona, ³School of Big Data and Computer Science, Guizhou Normal University ⁴Mohamed bin Zayed University of Al ⁵Linkoping University ⁶SB Intuitions, SoftBank ⁷Nankai International Advanced Research Institute (Shenzhen Futian), Nankai University

https://github.com/sen-mao/Loopfree