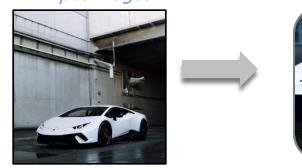


ArtiFade: Learning to Generate High-quality Subject from Blemished Images

Shuya Yang Shaozhe Hao Yukang Cao Kwan-Yee K. Wong The University of Hong Kong


Outline

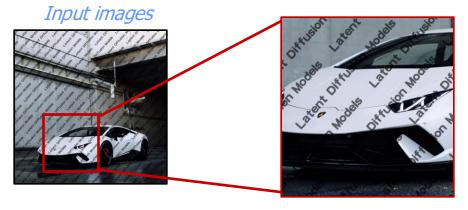
- Motivation
- Methodology
- Experiments
- Applications

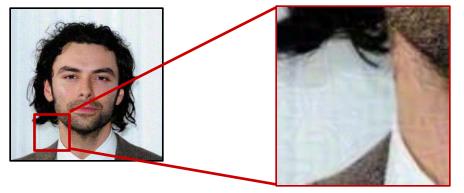
Subject-driven image generation

Input images

Textual Inversion

DreamBooth

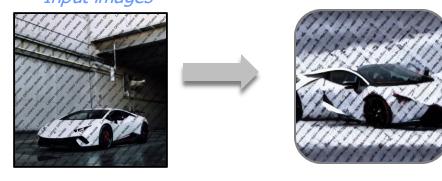



Subject-driven image generation

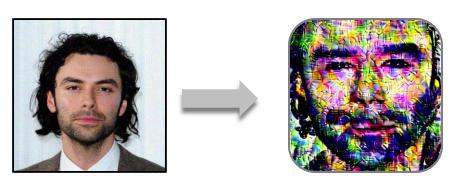
Textual Inversion

Visible Artifacts

DreamBooth



Invisible Artifacts


Blemished Subject-driven image generation

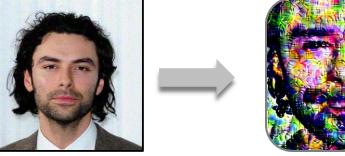
Input images

Textual Inversion

DreamBooth

Blemished Subject-driven image generation

Textual Inversion



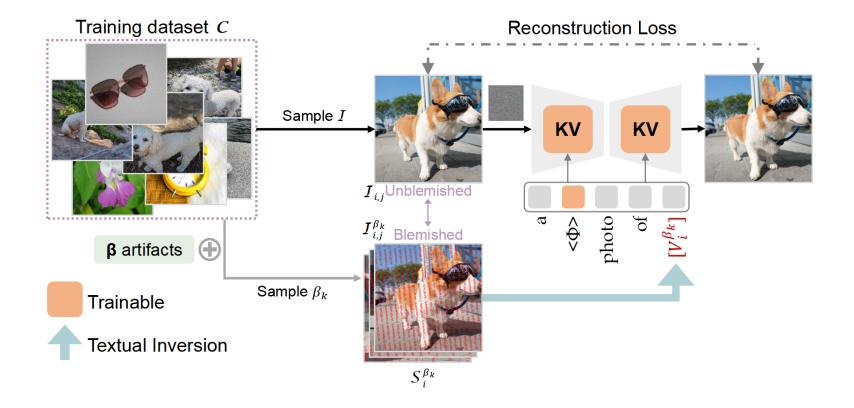
ArtiFade

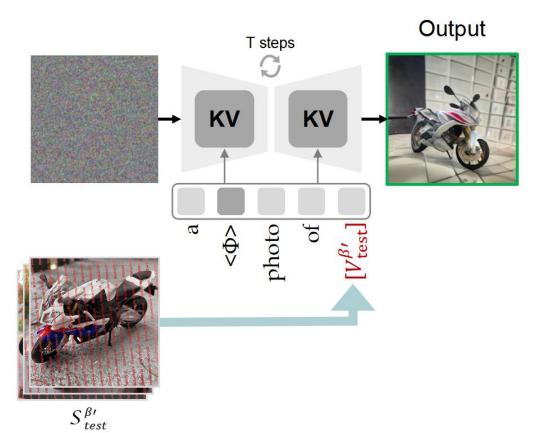
DreamBooth

Contribution

- Novel challenge: The first work to tackle the problem of blemished subject-driven generation.
- Proposed method: Introduce ArtiFade, which fine-tunes diffusion models to align unblemished and blemished data.
- **Benchmark:** Establish a new benchmark for evaluating blemished subject-driven generation.
- ➤ **Generalizability:** Demonstrate strong generalizability, effective on both in-distribution and out-of-distribution artifacts.

Method of ArtiFade


I. Data preparation Step


 $\mathcal{S}_i^{\beta_k}$ Textual Inversion

 $[\mathbf{V}_{\mathbf{i}}^{\beta_{\mathbf{k}}}], \quad i=1,2,...,N; \quad k=1,2,...,L$

2. Fine-tuning Step

3. Inference Step

Experiments

ArtiFade with Textual Inversion - Quantitative

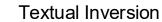
- 1. I^{CLIP}:= CLIP similarities between the generated images and the corresponding unblemished subsets
- 2. I^{DINO} := DINO similarities between the generated images and the corresponding unblemished subsets
- 3. T^{CLIP} := CLIP similarity between the generated images and the text prompt
- 4. $R^{CLIP} = I^{CLIP} / I_{\beta}^{CLIP}$
- 5. $R^{DINO} = I^{DINO} / I_{\beta}^{DINO}$

ArtiFade with Textual Inversion - Quantitative

In-distribution

Method	WM-model on WM-ID-test					
	$I^{\overline{\mathrm{DINO}}} \uparrow$	$R^{DINO} \uparrow$	$I^{CLIP} \uparrow$	$R^{CLIP} \uparrow$	$T^{CLIP} \uparrow$	
TI (unblemished)						
TI (blemished)	0.217		0.576	0.909	0.263	
Ours	0.337	1.300	0.649	1.020	$\boldsymbol{0.282}$	

Out-of-distribution


Method	WM-model on WM-OOD-test					
Wicollod	$I^{\overline{\mathrm{DINO}}} \uparrow$	$R^{DINO} \!\!\uparrow$	$I^{CLIP} \uparrow$	$R^{CLIP} \uparrow$	$T^{CLIP} \uparrow$	
TI (unblemished)	0.488	1.278	0.730	1.136	0.283	
TI (blemished)	0.229	0.858	0.575	0.929	0.262	
Ours	0.356	1.237	0.654	1.079	0.282	

ArtiFade with Textual Inversion - Qualitative (In-distribution)

Input images

Ours

 $[V_{test}^{\beta\prime}]$ in the street

 $[V_{test}^{\beta'}]$ with a mountain in the background

Ours

rs Textual Inversion

 $[V_{test}^{\beta\prime}]$ in the snow

 $[V_{test}^{\beta'}]$ with a city in the background

ArtiFade with Textual Inversion - Qualitative (Out-of-distribution)

Input images

Ours

Textual Inversion

 $[V_{test}^{\beta'}]$ on top of a wooden floor

 $[V_{test}^{\beta \prime}]$ in the movie theater

Ours

Textual Inversion

 $[V_{test}^{\beta'}]$ with a city in the background

 $[V_{test}^{\beta \prime}]$ in a luxurious interior living room

ArtiFade with DreamBooth - Quantitative

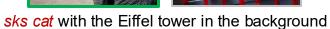
In-distribution

Method	WM-ID-test					
	$I^{DINO} \uparrow$	$R^{\text{DINO}} \uparrow$	$I^{CLIP} \uparrow$	$R^{CLIP} \uparrow$	$T^{CLIP}\uparrow$	
TI (unblemished) TI (blemished) DB (blemished) Ours (TI-based) Ours (DB-based)	0.488 0.217 0.503 0.337 0.589	1.349 0.852 0.874 1.300 1.308	0.730 0.576 0.738 0.649 0.795	1.070 0.909 0.939 1.020 1.083	0.283 0.263 0.272 0.282 0.284	

ArtiFade with DreamBooth - Qualitative (In-distribution)

Input images

Ours


sks cat with a beautiful sunset

DreamBooth

sks motorbike in the jungle

ArtiFade with DreamBooth - Qualitative (Invisible artifacts)

sks person in the snow

sks person with a city in the background

Ablation Study

$\boxed{\text{Method} \big W^{kv}}$	W^q	$\langle \Phi \rangle \mid I^{\text{DINO}}$	R ^{DINO}	I ^{CLIP}	R ^{CLIP}	T ^{CLIP}
Var _A Var _B Var _C Ours √	✓	✓ 0.154 ✓ 0.283 0.342 ✓ 0.337	1.412 1.230 1.292 1.300	0.566 0.617 0.652 0.649	0.984 0.978 1.019 1.020	0.265 0.277 0.280 0.282

Applications

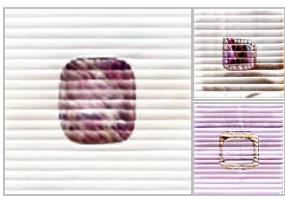
stickers removal& glass effect removal

Applications

Input sample

Textual Inversion

Textual Inversion



Thank you!