

FisherTune:

Fisher-Guided Robust Tuning of Vision Foundation Models for Domain Generalized Segmentation

Dong Zhao, Jinlong Li, Shuang Wang, Mengyao Wu, Qi Zang, Nicu Sebe, Zhun Zhong

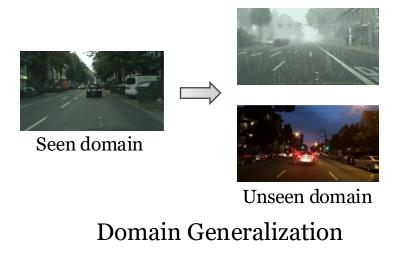
University of Trento

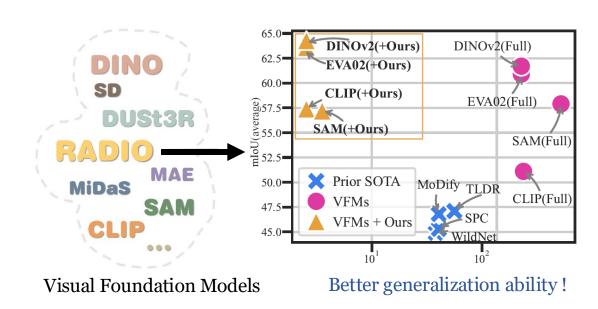
Hefei University of Technology

Outline

- Background
- Method
- Experiments

Background

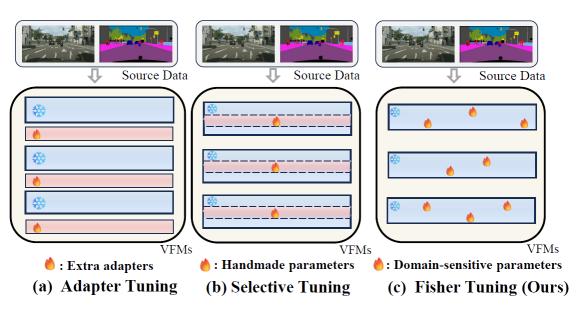

Introduction of Domain Generalized Segmentation


• Domain Generalized Segmentation aims to train a model on source domains that can generalize to unseen target domains without accessing their data during training.

• **Progress:** Enhancing local segmentation models \rightarrow Enhancing pretrained VFMs.

• Challenging: Directly fine-tuning VFMs often compromises their inherent generalization

ability.

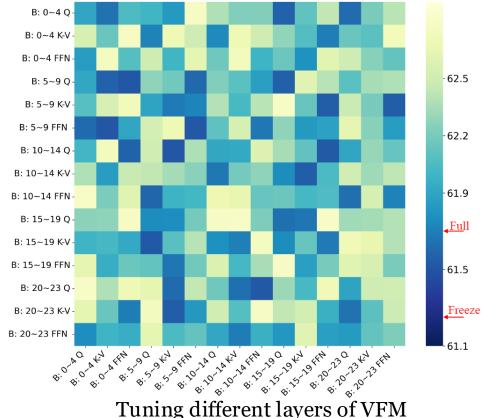


Motivation

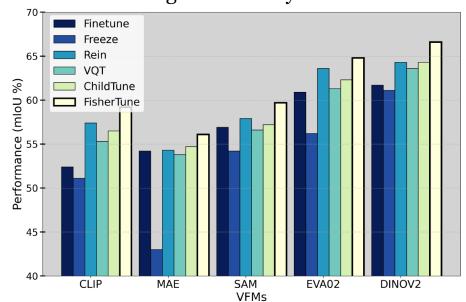
How to enhance task-specific adaptability of VFMs while preserving their generalization capability?

• **Simple way:** use PEFT methods like adapters (e.g., LoRA) or selectively fine-tuning small subset of parameters..

Disadvantages


- ◆ Adapters does not fully leverage the internal representations of the VFM.
- ◆ Fine-tuning small subset of parameters fail to guarantee the generalization ability of the VFM.

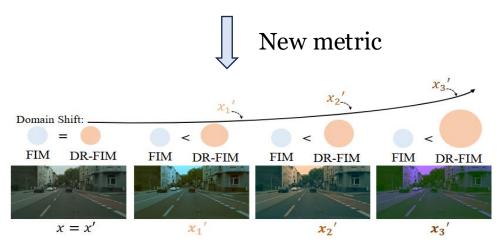
Motivation


How to effectively fine-tune VFM for DG tasks?

We find that,

- Fine-tuning different layers of VFMs yields varying impacts on generalization performance.
- Some parameters are crucial for task adaptation, while others are essential for preserving generalization.
- This suggests the existence of domain-sensitive parameters that should be selectively tuned for DG tasks.

Tuning different layers of VFM


Outline

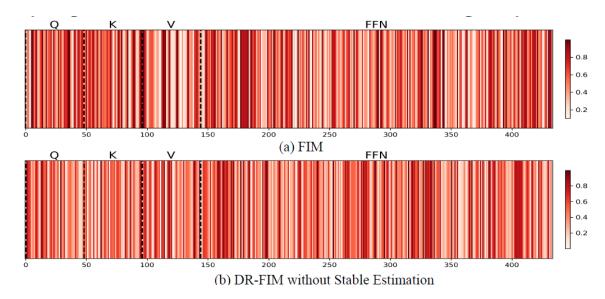
- Background
- Method
- Experiments

Method

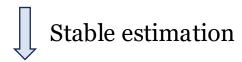
$$\mathbf{F}_{\boldsymbol{\theta}} = \mathbb{E}_{x} \left[\mathbb{E}_{y \sim f_{\boldsymbol{\theta}}(y|x)} \nabla_{\boldsymbol{\theta}} \mathcal{L}(f_{\boldsymbol{\theta}}(x), y) \cdot \nabla_{\boldsymbol{\theta}} \mathcal{L}(f_{\boldsymbol{\theta}}(x), y)^{\top} \right]$$

The Fisher Information Matrix captures task-sensitive parameters, not the domain-sensitive parameters

$$\Delta \mathbf{F}_{\theta} = \frac{|\mathbf{F}_{\theta}(x, y) - \mathbf{F}_{\theta}(x', y)|}{\min(\mathbf{F}_{\theta_i}(x), \mathbf{F}_{\theta_i}(x')) + \epsilon}$$


Reflecting the model's varying sensitivity to parameter changes in data distributions.

Higher FIM, more information sensitive to changing Lower FIM, less information insensitive to changing


$$\mathbf{DRF}_{\theta} = \underbrace{\mathbf{F}_{\theta}(x,y)}_{\text{task-sensitive}} + \underbrace{e^{-(\epsilon_{\mu} + \epsilon_{\sigma})} \frac{|\mathbf{F}_{\theta}(x,y) - \mathbf{F}_{\theta}(x',y)|}{\min(\mathbf{F}_{\theta_{i}}(x), \mathbf{F}_{\theta_{i}}(x')) + \epsilon}}_{\text{domain-sensitive}}.$$

We introduce a new metric, Domain-Related FIM (DR-FIM), to account for both task-sensitive and domain-sensitive parameters

Method

Directly estimating FIM and DR-FIM is often unstable, due to high gradient noise and sensitivity.

Variational Estimation:

$$L(\hat{\boldsymbol{\theta}}, \Lambda^{-1}) = \mathbb{E}_{\boldsymbol{\theta} \sim q(\boldsymbol{\theta})} \left[\mathcal{L}(\boldsymbol{\theta}) \right] + \gamma \, KL(q(\boldsymbol{\theta}) || p(\boldsymbol{\theta})).$$

We introduce the **prior parameter distribution** as a regularizer to prevent degradation during estimation.

According to the definition of FIM and its connection with the Hessian matrix, we have

$$\mathbb{E}_{\boldsymbol{\theta} \sim q(\boldsymbol{\theta})} \left[\mathcal{L}(\boldsymbol{\theta}) \right] \approx \mathcal{L}(\hat{\boldsymbol{\theta}}) + \frac{1}{2} \operatorname{Tr} \left(\mathbf{F}_{\boldsymbol{\theta}} \Lambda^{-1} . \right)$$

Finally, the DR-FIM can be estimated as,

$$\mathbf{DRF}_{\theta} = \gamma \left(\Lambda_x - \tau^{-2} I + e^{-(\epsilon_{\mu} + \epsilon_{\sigma})} \frac{|\Lambda_x - \Lambda_{x'}|}{\min(\Lambda_x, \Lambda_{x'}) + \frac{\epsilon}{\gamma}} \right)$$

Outline

- Background
- Method
- Experiments

Experiments | Main Results

GTAV → Cityscapes (Citys) + BDD100K (BDD) + Mapillary (Map)									
VFM type	Fine-tune Method	Trainable Params Citys BDD Map							
	Full	304.20M	51.3	47.6	54.3	51.1			
GT TD CAST	Freeze	0M	53.7	48.7	55.0	52.5			
CLIP [49]	LoRA [22]	0.79M	54.0	49.8	55.1	53.0			
(ViT-Large)	VPT [25]	3.69M	54.0	51.8	57.5	54.4			
	Rein [63]	2.99M	57.1	54.7	60.5	57.4			
	VQT [60]	3.01M	54.3	51.2	56.7	55.3			
	ChildTune [66]	15.21M	57.9	53.4	58.2	56.5			
	Ours	15.21M	59.2	57.5	61.0	59.2			
	Full	304.20M	53.7	50.8	58.1	54.2			
MAE [10]	Freeze	0M	43.3	37.8	48.0	43.0			
MAE [19]	LoRA [22]	0.79M	44.6	38.4	52.5	45.2			
(Huge))	VPT [25]	3.69M	52.7	50.2	57.6	53.5			
	Rein [63]	2.99M	55.0	49.3	58.6	54.3			
	VQT [60]	3.01M	53.3	50.3	57.7	53.8			
	ChildTune [66]	15.21M	55.4	50.6	58.1	54.7			
	Ours	15.21M	56.6	51.9	59.7	56.1			
	Full	632.18M	57.6	51.7	61.5	56.9			
	Freeze	0M	57.0	47.1	58.4	54.2			
SAM [28]	LoRA [22]	0.79M	57.4	47.7	58.4	54.5			
(Huge)	VPT [25]	3.69M	56.3	52.7	57.8	55.6			
	Rein [63]	2.99M	59.6	52.0	62.1	57.9			
	VQT [60]	3.01M	56.7	53.9	59.3	56.6			
	ChildTune [66]	15.21M	60.8	49.6	61.2	57.2			
	Ours	15.21M	60.9	54.4	63.9	59.7			
	Full	304.20M	62.1	56.2	64.6	60.9			
	LoRA [22]	0.79M	55.5	52.7	58.3	55.5			
	AdaptFormer [7]	3.17M	63.7	59.9	64.2	62.6			
EVA02 [15]	VPT [25]	3.69M	62.2	57.7	62.5	60.8			
(Large)	Rein [63]	2.99M	65.3	61.1	63.9	63.4			
	VQT [60]	3.01M	61.3	55.1	62.2	59.5			
	ChildTune [66]	15.21M	61.6	59.3	62.3	61.1			
	Ours	15.21M	65.8	61.5	66.0	64.4			

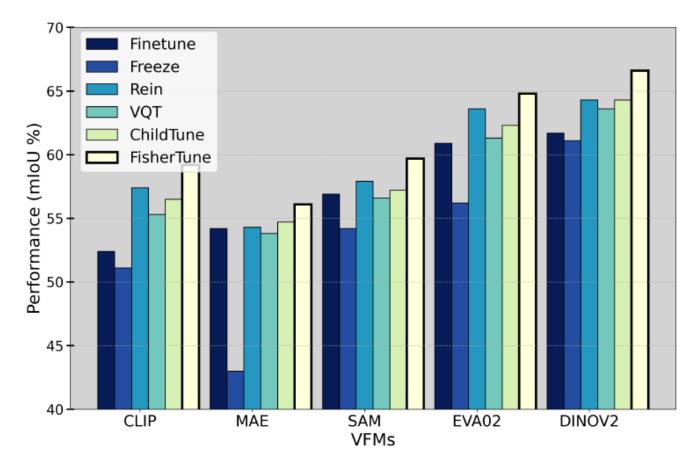


Table 1: Comparison of average performance across multiple VFMs in DGSS experiments on GTA \rightarrow Cityscapes + BDD100K + Mapillary using different finetuning methods.

Experiments | Main Results

								C	Cityscape	es → BI	D100K											
	Fine-tune Method	Trainable Params	road	side.	build.	wall	fence	pole	light	sign	vege	terr.	sky	pers.	rider	car	truck	bus	train	moto.	bicy.	mIoU
	Full	304.20M	89.0	44.5	89.6	51.1	46.4	49.2	60.0	38.9	89.1	47.5	91.7	75.8	48.2	91.7	52.5	82.9	81.0	30.4	49.9	63.7
	Freeze	0M	92.1	55.2	90.2	57.2	48.5	49.5	56.7	47.7	89.3	47.8	91.1	74.2	46.7	92.2	62.6	77.5	47.7	29.6	47.2	63.3
	REIN [63]	2.99M	92.4	59.1	90.7	58.3	53.7	51.8	58.2	46.4	89.8	49.4	90.8	73.9	43.3	92.3	64.3	81.6	70.9	40.4	54.0	66.4
DINOv2	VQT [60]	3.01M	88.3	49.9	85.9	50.7	47.9	44.3	55.6	39.2	86.1	42.8	87.5	71.3	45.4	89.4	53.5	82.6	74.9	46.1	57.4	63.1
	ChildTune [65]	15.21M	92.1	56.1	91.0	58.8	46.9	52.0	58.6	47.2	90.8	47.9	93.3	72.0	47.1	93.0	63.9	76.2	47.9	28.8	48.3	63.8
	Ours	15.21M	92.1	55.4	90.2	58.9	50.9	54.5	59.8	49.1	92.5	52.8	91.0	73.7	51.5	92.7	67.4	82.9	72.8	44.3	54.1	67.7
	Full	304.20M	89.3	46.9	89.9	47.7	45.6	50.1	56.8	42.2	88.8	48.4	89.9	75.8	49.0	90.5	45.3	69.2	55.9	44.4	55.1	62.1
	REIN [63]	OM	93.1	52.7	88.0	47.4	31.1	41.7	46.0	39.6	85.7	41.4	89.5	67.5	39.7	89.0	47.0	72.8	46.3	19.2	35.2	56.5
T714.02	VQT [60]	2.99M	91.7	51.8	90.1	52.8	48.4	48.2	56.0	42.0	89.1	44.1	90.2	74.2	47.0	91.1	54.5	84.1	78.9	47.2	59.4	65.3
EVA02	ChildTune [65]	3.01M	90.1	46.6	91.1	46.9	46.4	51.7	56.5	43.2	89.3	49.6	92.3	75.0	50.3	90.3	44.6	71.8	57.4	44.0	55.8	62.8
	ChildTune	15.21M	91.4	50.7	88.9	47.9	47.4	54.6	56.3	45.9	91.2	50.0	91.2	76.1	52.2	92.3	48.0	69.3	55.2	43.9	59.8	63.8
	Ours	15.21M	92.6	49.9	95.9	51.1	53.0	50.8	59.8	45.7	92.9	54.6	94.0	83.5	52.2	93.9	45.1	69.4	57.1	47.2	62.4	65.8
									Citysca	$pes \rightarrow A$	ACDC											
	Full	304.20M	92.8	75.0	87.4	55.7	54.1	55.6	71.2	69.6	82.4	56.0	92.2	66.8	45.6	89.0	79.7	87.9	87.5	51.4	62.7	71.7
	Freeze	OM	86.0	68.1	80.2	52.4	47.8	48.2	65.5	65.3	80.0	54.7	86.2	65.0	44.9	86.4	73.3	80.5	86.9	50.1	60.9	67.5
	REIN [63]	2.99M	94.6	78.3	92.0	61.9	55.0	64.8	73.8	72.7	88.4	67.4	95.4	77.1	60.2	92.6	84.1	86.9	92.5	67.6	68.6	77.6
DINOv2	VQT [60]	3.01M	93.3	76.4	89.2	55.0	53.9	53.9	72.0	67.3	83.4	55.3	95.1	67.7	47.0	90.5	81.6	86.3	88.2	50.1	61.9	72.0
	ChildTune [65]	15.21M	92.9	72.8	84.7	56.6	54.1	56.8	70.9	67.7	82.3	55.7	93.6	65.9	45.3	89.6	77.6	87.8	87.0	52.5	62.2	71.4
	Ours	15.21M	95.6	79.0	96.5	60.5	58.3	64.9	75.6	77.7	85.0	61.3	98.6	73.6	51.5	94.8	85.4	94.7	93.8	59.0	66.7	77.5
	Full	304.20M	90.2	68.8	81.0	53.7	49.9	48.1	68.7	64.2	80.1	57.4	88.1	68.8	41.8	89.7	74.1	82.1	89.7	50.0	56.8	68.6
	Freeze	OM	86.0	60.5	76.3	49.0	41.7	46.1	60.5	61.0	72.1	49.8	77.7	56.7	40.6	80.3	68.3	77.2	85.5	46.7	56.4	62.8
	REIN [63]	2.99M	88.7	71.8	81.7	55.2	51.7	50.5	70.5	64.9	83.7	59.0	90.3	72.0	48.3	93.0	79.3	83.3	91.3	50.8	62.0	70.9
EVA02	VQT [60]	3.01M	90.3	71.2	81.4	54.3	53.1	49.1	67.9	64.3	82.0	60.5	86.9	66.8	41.3	89.3	76.6	81.7	91.3	47.2	55.7	69.0
	ChildTune [65]	15.21M	86.4	68.8	81.0	54.4	50.6	48.9	69.6	64.5	83.2	57.8	88.2	69.0	47.9	90.2	74.8	82.8	90.3	51.0	61.4	69.5
	Ours	15.21M	90.5	75.2	83.6	58.8	54.6	52.2	73.1	66.6	85.7	60.5	90.2	70.7	51.5	92.3	82.6	88.2	91.9	54.0	62.4	72.9

Table 2: DGSS generalization performance for each category from the Cityscapes source domain to mixed-domain BDD100K and ACDC, with comparison methods including adaptor-based Rein and selective parameter fine-tuning methods.

Experiments | Visualization

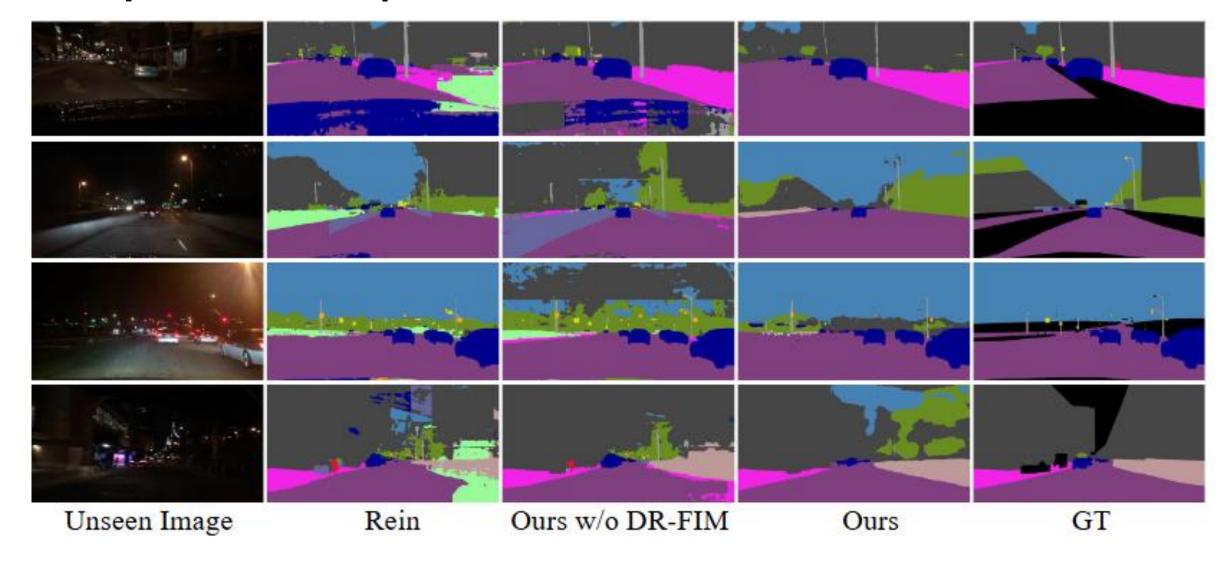
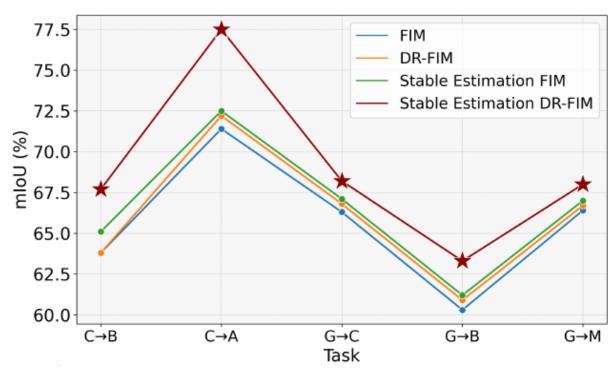


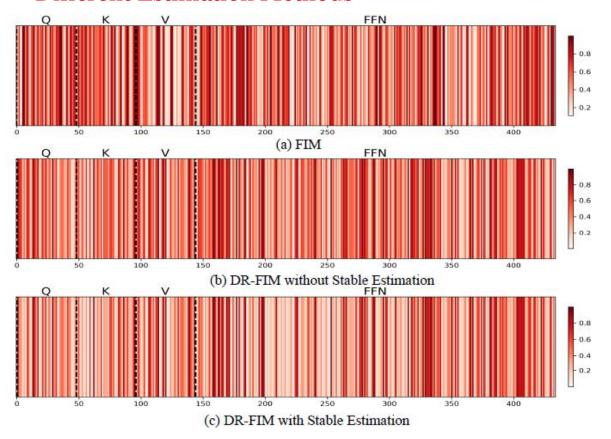
Figure 2: More structured and semantic segmentation on extreme scenarios.


Experiments | Evaluation

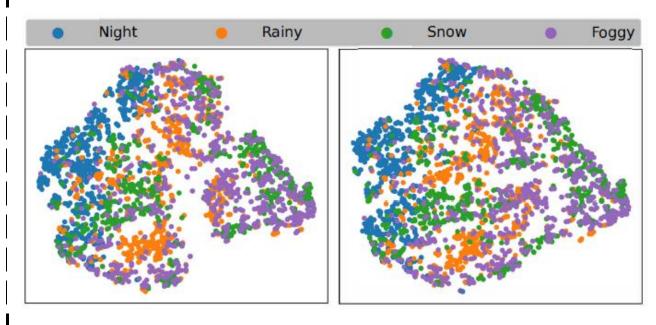
Ablation Study

		Cityscapes →BDD100K	Cityscapes →ACDC				
	Full	62.1	68.6				
EVA02 [15] (Large)	Freeze	56.5	62.8				
	Random	61.1	67.6				
	Random Q	62.8	69.1				
	Random K	61.9	68.1				
	Random V	62.9	69.2				
	$\mathbf{F}_{m{ heta}}$	63.8	69.5				
	$\Delta \mathbf{F}_{m{ heta}}$	63.1	71.3				
	$\mathrm{DRF}_{m{ heta}}$	65.8 (+3.7)	72.9 (+5.3)				
	Full	63.7	71.7				
	Freeze	63.3	67.5				
	Random	62.7	71.0				
DINOv2 [5] (Large)	Random Q	63.2	72.0				
	Random K	63.5	72.3				
	${\bf Random}\ V$	63.2	72.9				
	$\mathbf{F}_{m{ heta}}$	63.8	71.4				
	$\Delta \mathbf{F}_{m{ heta}}$	64.5	76.1				
	DRF_{θ}	67.7 (+4.0)	77.5 (+5.8)				

DR-FIM outperforms both FIM and random selection strategies.


Different Estimation Methods

Stable estimation significantly improves the effectiveness of both FIM and DR-FIM


Experiments | Pre-training Transfer

Different Estimation Methods

Stable DR-FIM estimation more effectively highlights important parameters

Fine-tuning Transfer

FisherTune produces more balanced and domaininvariant feature distributions across unseen domains compared to Rein.

Thanks for Your Listen!