

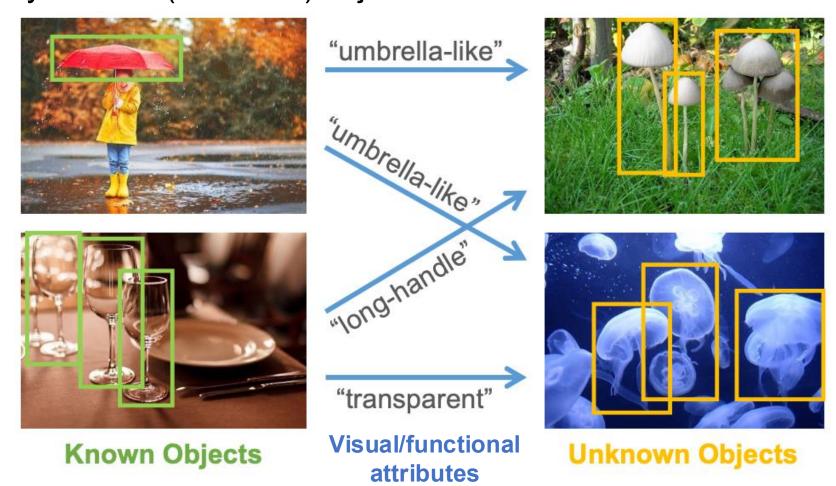
Detecting Open World Objects via Partial Attribute Assignment

Muli Yang¹ Gabriel James Goenawan¹ Huaiyuan Qin¹ Kai Han² Xi Peng³ Yanhua Yang⁴ Hongyuan Zhu¹

1: Institute for Infocomm Research (I²R), A*STAR, Singapore 2: The University of Hong Kong 3: Sichuan University 4: Xidian University

Introduction

□ Open World Object Detection (OWOD) aims to detect and continually learn previously unseen (unknown) objects.



Introduction

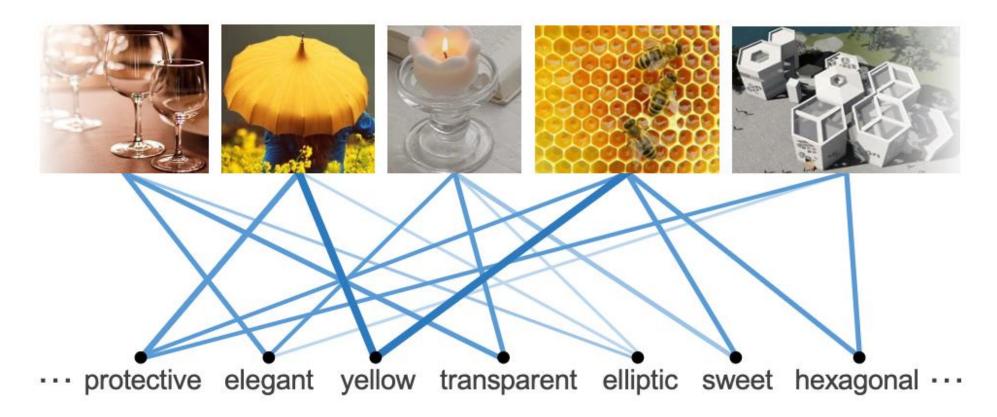
☐ Beginning with a large pool of potentially relevant attributes, the major challenge lies in effectively refining a subset of highly-relevant attributes, to enable reliable detection of both known and unknown objects.

?

··· protective elegant yellow transparent elliptic sweet hexagonal ···

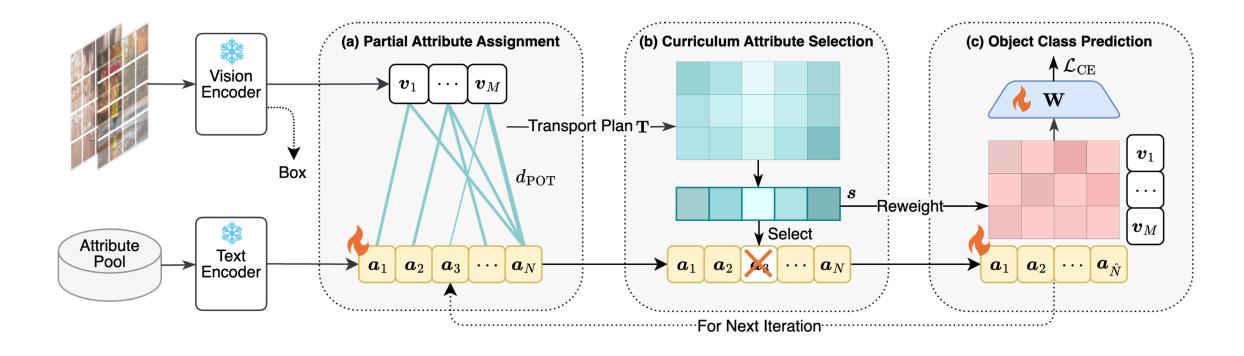
Introduction

☐ We model this problem as a *Partial Optimal Transport (POT)* problem, enabling end-to-end attribute selection and optimization for effectively detecting both known and unknown objects.



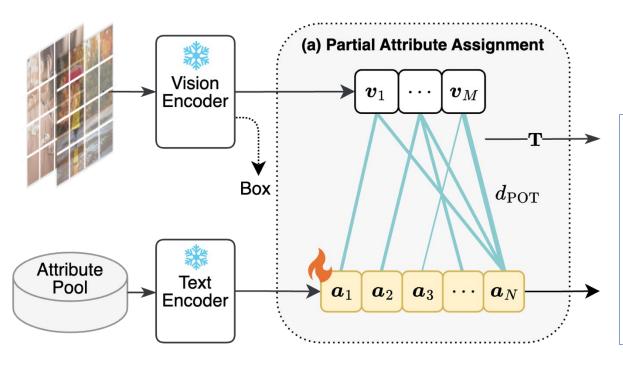
Method: overview

☐ We propose *Partial Attribute Assignment (PASS)*, a three-step algorithm that progressively selects and optimizes a targeted subset of relevant attributes throughout the training process in an end-to-end manner.



Step (a): Partial Attribute Assignment

☐ Initial optimization of attribute embeddings by solving the POT problem between visual and attribute embeddings



Optimize attribute embeddings by solving the following POT problem:

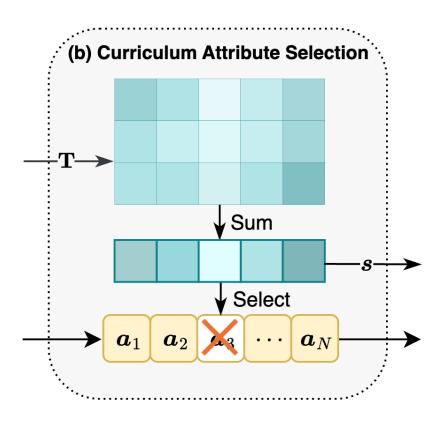
$$d_{ ext{POT},\epsilon}(\mathcal{V},\mathcal{A};\mathbf{C}) riangleq \min_{\mathbf{T} \in \Pi(\mathcal{V},\mathcal{A})} \langle \mathbf{T}, \mathbf{C}
angle_F - \epsilon h(\mathbf{T})$$

$$\mathcal{V} = \sum_{m=1}^{M} rac{1}{M} \delta_{oldsymbol{v}_m} \,, ~~ \mathcal{A} = \sum_{n=1}^{N} rac{lpha}{N} \delta_{oldsymbol{a}_n} \,.$$

$$\Pi(\mathcal{V}, \mathcal{A}) \triangleq \{\mathbf{T} \in \mathbb{R}_+^{M \times N} | \mathbf{T} \mathbf{1}_N = \mathcal{V}, \mathbf{T}^{\top} \mathbf{1}_M \leqslant \mathcal{A} \}$$

Step (b): Curriculum Attribute Selection

☐ Gradually selecting a smaller subset of most relevant attributes based on relevance score originated from the POT plan



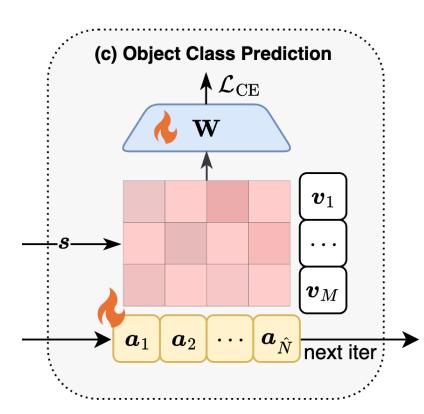
The POT plan **T** derived in step (a) manifests the correlation between individual visual and attribute embeddings. By summing along the column of **T**, we define the relevance score of each attribute (*w.r.t.* visual objects) as

$$oldsymbol{s} = [s_1, s_2, \dots, s_N]^ op \quad s_n = rac{N}{lpha} \sum
olimits_{m=1}^M T_{m,n}$$

Hence, we can gradually select a smaller subset of most relevant attributes based on *s* during training.

Step (c): Object Class Prediction

☐ Using the selected attributes to calculate the object class predictions of each visual input, and beginning the next three-step iteration



s can be further used to reweight the selected attributes when computing object class predictions, serving as a complementary "soft" filtering strategy:

$$p(O_k|\boldsymbol{v}) = \frac{\exp(\boldsymbol{w}_k^{\top} \mathbf{A}'^{\top} \boldsymbol{v})}{\sum_{k'=1}^{K} \exp(\boldsymbol{w}_{k'}^{\top} \mathbf{A}'^{\top} \boldsymbol{v})} \qquad \boldsymbol{A}' = [\boldsymbol{a}_1', \boldsymbol{a}_2', \dots, \boldsymbol{a}_{N'}']$$
$$\boldsymbol{a}_n' = s_n \hat{\boldsymbol{a}}_n$$

After optimized by the CE loss, attribute embeddings are fed back into step (a) for the next iteration.

Experiments: setup

☐ Classes in each dataset are halved into known and unknown classes

$\overline{\textbf{Dataset} \left(\downarrow \right)}$	Train Images	Test Images	Classes	Attributes		
Aquatic	318	319	7 (4+3)	385		
Aerial	5000	5000	20 (10+10)	1229		
Game	788	787	59 (30+29)	390		
Medical	93	89	12 (6+6)	390		
Surgery	912	917	13 (6+7)	808		

 \square Probability of unknown objects: task relevance $(p_{ID}) \times unknownness (p_{OOD})$

$$p_{\text{ID}} = \max_{n \in \{1, \dots, N'\}} \sigma(\boldsymbol{a}_n'^{\top} \boldsymbol{v}),$$
$$p_{\text{OOD}} = 1 - \max_{k \in \{1, \dots, K\}} p(O_k | \boldsymbol{v}),$$

☐ Evaluation metric: mAP on known or unknown objects

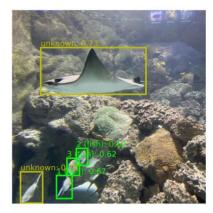
Experiments: comparison with SOTAs

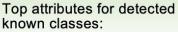
$\overline{\textbf{Dataset}} \ (\rightarrow)$	Aquatic			Aerial			Game			Medical				Surgery				Overall							
Task ID (\rightarrow)	→)		Tas	Task 2		Task 1		Task 2		Task 1		Task 2		Task 1		Task 2		Task 1		Task 2		Task 1		Task 2	
	U	K	PK	CK	U	K	PK	CK	U	K	PK	CK	U	K	PK	CK	U	K	PK	CK	U	K	PK	CK	
B/16 Backbone:																									
BASE-ZS+GT [†]	29.8	45.0	45.0	36.7	1.3	5.7	5.7	1.4	15.0	0.4	0.4	0.1	0.5	0.0	0.0	0.1	5.6	1.5	1.4	0.3	10.4	10.5	10.5	7.7	
BASE-ZS	6.2	45.0	45.0	36.7	0.9	5.7	5.7	1.4	15.7	0.4	0.4	0.1	0.2	0.0	0.0	0.1	1.4	1.5	1.4	0.3	4.9	10.5	10.5	7.7	
BASE-ZS+IN	26.5	45.1	45.1	36.7	1.9	5.7	5.7	1.4	2.4	0.3	0.3	0.0	0.6	0.0	0.0	0.1	1.7	1.4	1.0	0.3	6.6	10.5	10.4	7.7	
BASE-ZS+LLM	24.7	45.1	45.1	36.5	1.4	5.7	5.7	1.4	15.1	0.4	0.4	0.1	0.6	0.0	0.0	0.1	8.9	1.5	1.3	0.3	10.2	10.5	10.5	7.7	
BASE-FS	7.1	41.1	41.1	31.9	1.2	10.4	10.1	4.0	16.0	4.6	4.8	3.9	0.6	6.1	6.1	3.3	1.3	11.9	11.3	10.9	5.2	14.8	14.7	10.8	
FOMO [78]	3.5	43.8	44.1	40.8	0.9	12.0	12.6	5.4	13.3	3.8	4.4	4.1	2.1	6.4	5.5	11.5	6.1	12.7	12.9	11.0	5.2	15.7	15.9	14.6	
PASS (Ours)	5.2	43.4	43.2	46.6	1.9	14.0	16.0	7.0	21.5	10.0	7.7	9.0	4.9	8.4	6.8	12.1	14.3	15.6	13.1	14.7	9.6	18.3	17.4	17.9	
Δ	+1.7	-0.4	-0.9	+5.8	+1.0	+2.0	+3.4	+1.6	+8.2	+6.2	+3.3	+4.9	+2.8	+2.0	+1.3	+0.6	+8.2	+2.9	+0.2	+3.7	+4.4	+2.5	+1.5	+2.3	
L/14 Backbone:																									
BASE-ZS+GT [†]	34.8	36.0	36.0	42.3	1.0	7.9	7.2	0.8	12.4	0.9	0.8	0.3	2.4	0.2	0.2	0.3	2.4	0.2	2.6	1.3	10.6	9.0	9.4	9.0	
BASE-ZS	0.7	35.9	36.0	42.3	9.1	8.2	7.2	0.8	6.8	0.9	0.8	0.3	0.0	0.2	0.2	0.3	3.6	2.9	2.6	1.3	4.1	9.6	9.4	9.0	
BASE-ZS+IN	19.6	35.8	35.8	41.8	2.3	7.2	6.9	0.9	15.8	0.9	0.8	0.3	0.9	0.1	0.1	0.2	3.1	2.1	1.9	1.1	8.3	9.2	9.1	8.8	
BASE-ZS+LLM	24.7	35.8	35.8	42.2	0.6	7.6	7.2	0.8	12.5	0.9	0.8	0.2	1.6	0.1	0.1	0.2	12.6	2.6	2.5	1.3	10.4	9.4	9.3	9.0	
BASE-FS	2.4	43.6	42.9	42.8	9.7	23.7	21.9	13.0	8.2	10.4	10.2	13.4	1.1	23.2	21.7	24.2	3.6	26.0	25.0	7.4	5.0	25.4	24.3	20.2	
FOMO [78]	18.2	50.1	48.1	47.1	6.0	25.3	23.7	16.0	30.4	10.7	9.9	11.2	9.4	21.8	19.9	34.6	12.0	29.0	28.9	8.5	15.2	27.4	26.1	23.5	
PASS (Ours)	21.7	53.9	56.6	58.3	8.4	34.2	36.1	20.2	36.0	24.3	23.7	26.3	13.1	34.3	30.0	32.0	16.6	45.6	47.9	43.3	19.1	38.5	38.9	36.0	
Δ	+3.5	+3.8	+8.5	+11.2	+2.4	+8.9	+12.4	+4.2	+5.6	+13.6	+13.8	+15.1	+3.7	+12.5	+10.1	-2.6	+4.6	+16.6	+19.0	+34.8	+3.9	+11.1	+12.8	+12.5	

^{*}U: Unknown mAP; K: Known mAP; PK: Previously Known mAP; CK: Currently Known mAP

Experiments: visualization

☐ Detection results and top attributes for detected objects





- Shape is truncate tail
- Shape is flexible
- Environment is tide pool

Top attributes for detected unknown classes:

- Shape is dorsal fin shape
- Texture is ridged
- Shape is adipose fin shape

Top attributes for detected known classes:

- Shape is stationary
- Shape is converging
- Behavior is tournament

Top attributes for detected unknown classes:

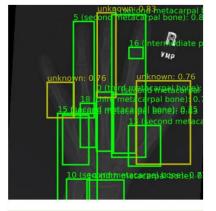
- Appearance is distinctive roof design
- Context is court lines
- Shape is stationary

Top attributes for detected known classes:

- Material is calcium
- Appearance is visible joints between bones
- Color is veins

Top attributes for detected unknown classes:

- Appearance is edges
- Shape is smooth
- Texture is striped



Top attributes for detected known classes:

- Shape is straight
- Shape is convex
- Shape is knobby

Top attributes for detected unknown classes:

- Shape is cracked
- Shape is straight
- Features is thumb metacarpal

□ Code: https://github.com/muliyangm/PASS

☐ Thank you for listening!