

PromptHash: Affinity-Prompted Collaborative Cross-Modal Learning for Adaptive Hashing Retrieval

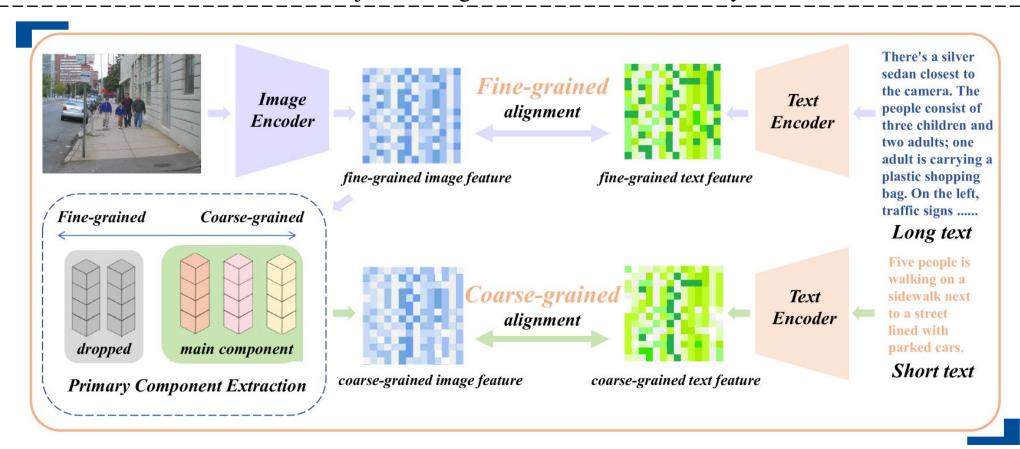
Qiang Zou, Shuli Cheng and Jiayi Chen

School of Computer Science and Technology, Xinjiang University Ürümqi 830046, China

Motivation & Problem Statement

the challenge of truncated text semantics

For example, in the commonly used cross-modal hashing dataset MS-COCO, text lengths can range from 169 to 625 characters, far exceeding the maximum input limit of 77 characters for the CLIP text encoder. This results in severe semantic truncation. Therefore, mitigating this issue and supplementing missing contextual semantics has become a major challenge in the research community.



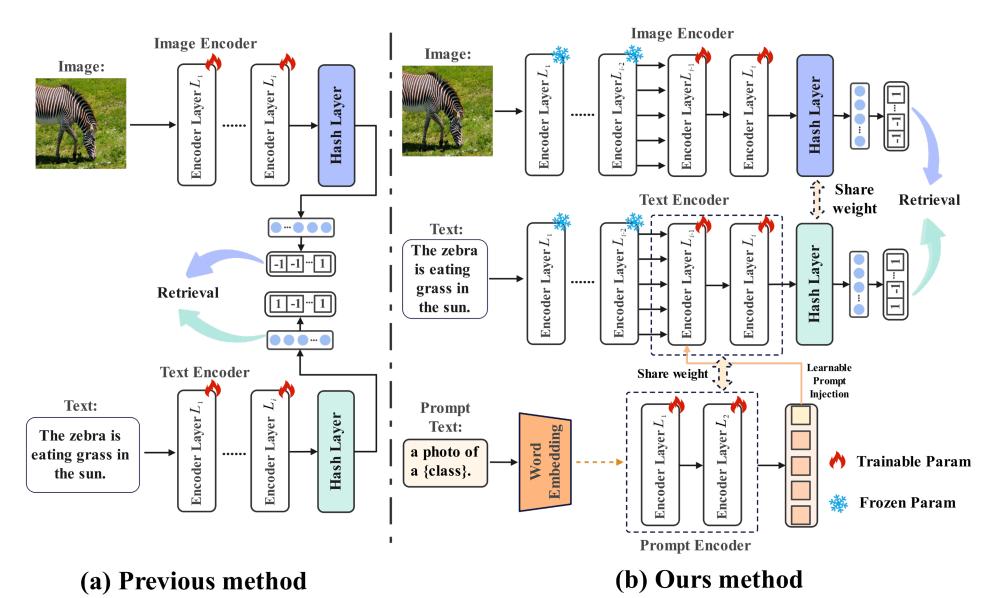
■■ Motivation & Problem Statement

• Attention-based model c^0 0.5 $\hat{\alpha}_0^1$ 0.5 $\hat{\alpha}_0^2$ 0.0 $\hat{\alpha}_0^3$ 0.0 $\hat{\alpha}_0^4$ c^0 As RNN input $c^0 = \sum_{i=0}^{\infty} \hat{\alpha}_0^i h^i = 0.5h^1 + 0.5h^2$

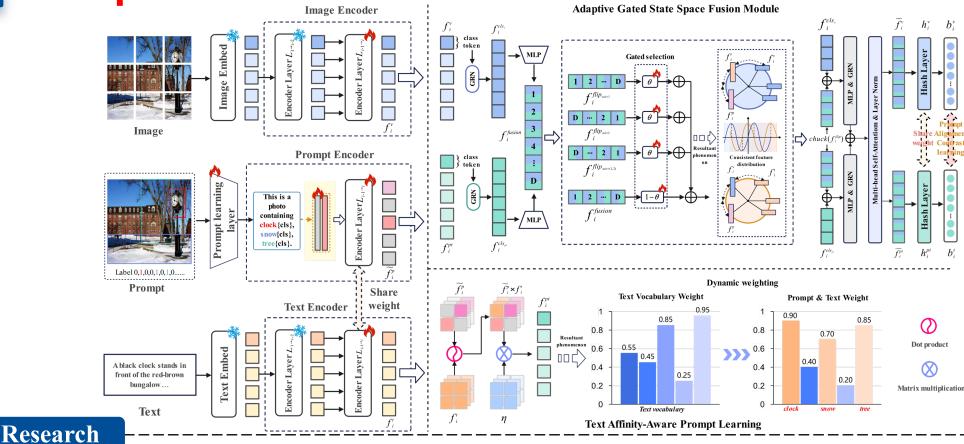
Semantic loss and contextual redundancy

Existing cross-modal utilize hashing methods contrastive learning to align modalities, but benchmark datasets like MIRFLICKR-25K, NUS-WIDE, and MS-COCO still suffer from context loss and semantic redundancy in text representations. For example, MIRFLICKR-25K NUS-WIDE and concatenate multiple tags without context, while MS-COCO merges multiple captions, leading to redundant information. These issues result in suboptimal hash codes and reduced retrieval performance.

Related Work

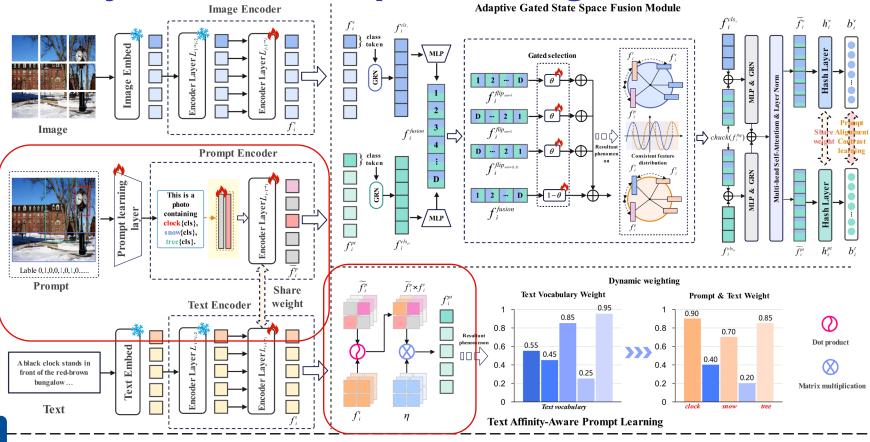


PromptHash



Mainstream pre-trained models like CLIP often truncate long texts, causing semantic loss and suboptimal hash codes, while some datasets suffer from context deficiency and redundancy. To address this, we introduce a learnable Text Affinity-Aware Prompt (TAAP) to highlight retrieval-relevant semantics and mitigate truncation. Additionally, an Adaptive Gated Selection Fusion (AGSF) module adaptively fuses multimodal features and filters redundant information, further improving cross-mod al retrieval.

■■ Text Affinity-Aware Prompt Learning (TAAP)



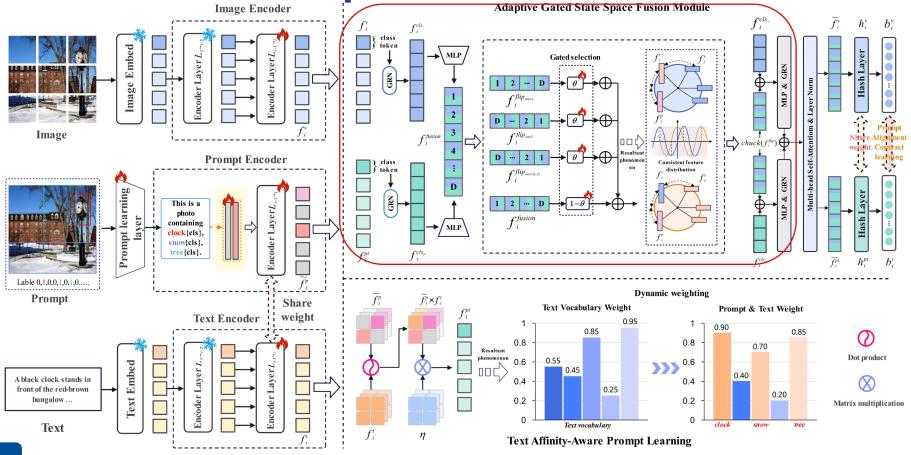
To mitigate semantic truncation and context loss, we introduce a learnable affinity text prompt, where all tokens

except the class name are learnable. The prompt is trained using the last two Transformer layers of the CLIP text encoder and adaptively fused with original text features via an adapter, thus highlighting retrieval-relevant semantics

and improving retrieval performance without extra visual prompts.

Research

■■ Adaptive Gated State Space Fusion (AGSF)



Research

To address cross-modal redundancy, we propose an Adaptive Gated Selection Fusion (AGSF) module that combines SSM and Transformer strengths to adaptively fuse features, emphasizing retrieval-relevant semantics and filtering out redundant or negative information.

Experimental Results--Ablation Study

	Methods	MIRFLICKR-25K			NUS-WIDE			MS COCO		
	Wiethous	16bit	32bit	64bit	16bit	32bit	64bit	16bit	32bit	64bit
12Т	baseline	0.8444	0.8590	0.8666	0.7228	0.7377	0.7488	0.7099	0.7594	0.7793
	w/o (PACL+AGSF)	0.8767	0.8855	0.8908	0.8278	0.8555	0.8656	0.7222	0.7910	0.8207
	w/o (TAAP+PACL)	0.9139	0.9269	0.9329	0.7668	0.7838	0.7893	0.7117	0.7687	0.7933
	w/o AGSF	0.9346	0.9512	0.9593	0.8377	0.8584	0.8709	0.7424	0.8111	0.8444
	w/o PACL	0.9720	0.9859	0.9924	0.9013	0.9450	0.9639	0.7246	0.8228	0.8725
	PromptHash(Ours)	0.9818	0.9960	0.9995	0.9313	0.9759	0.9931	0.7673	0.8782	0.9263
T2I	baseline	0.8383	0.8488	0.8524	0.7303	0.7477	0.7588	0.7201	0.7595	0.7885
	w/o (PACL+AGSF)	0.8558	0.8641	0.8704	0.7996	0.8272	0.8338	0.7205	0.7804	0.8103
	w/o (TAAP+PACL)	0.9140	0.9276	0.9331	0.7696	0.7841	0.7902	0.7141	0.7755	0.7973
	w/o AGSF	0.9420	0.9591	0.9670	0.8157	0.8313	0.8460	0.7509	0.8092	0.8414
	w/o PACL	0.9720	0.9859	0.9925	0.9060	0.9517	0.9676	0.7227	0.8272	0.8731
	PromptHash(Ours)	0.9816	0.9955	0.9995	0.9381	0.9761	0.9934	0.7667	0.8790	0.9283

Research

The table shows ablation results, indicating that the proposed TAAP module effectively mitigates text semantic truncation by adaptively weighting and preserving retrieval-relevant semantic information while suppressing irrelevant features. Additionally, the fusion module selects beneficial semantics from both modalities and filters out redundant contextual information. Aligning global and local prompt tokens further optimizes semantic representation, leading to high-quality hash codes.

Experimental Results – Comparison on NUS-WIDE

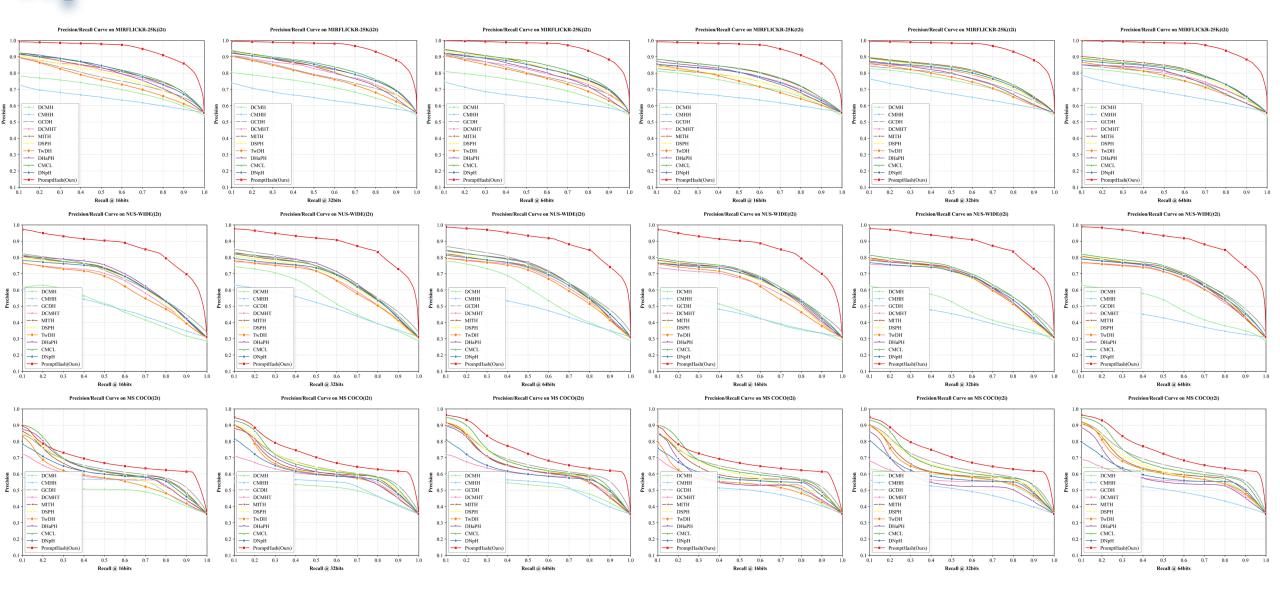
Methods		12	?T		T2I				
wiethous	16bit	32bit	64bit	Avg	16bit	32bit	64bit	Avg	
DCMH	0.5238	0.5995	0.6195	0.5809	0.544	0.5901	0.5956	0.5766	
СМНН	0.5312	0.5476	0.5299	0.5362	0.4826	0.4868	0.4711	0.4802	
GCDH	0.7142	0.7367	0.7498	0.7336	0.7215	0.7423	0.7534	0.7391	
DCHMT	0.6832	0.6892	0.7025	0.6916	0.692	0.7081	0.7208	0.707	
MITH	0.7062	0.718	0.7186	0.7143	0.7122	0.7281	0.7335	0.7246	
DSPH	0.6953	0.7031	0.7161	0.7048	0.7028	0.7165	0.7329	0.7174	
TwDH	0.6649	0.6855	0.6933	0.6812	0.6719	0.7126	0.7153	0.6999	
DNpH	0.7135	0.7169	0.7247	0.7184	0.7222	0.7265	0.7313	0.7267	
DHaPH	0.7215	0.7333	0.741	0.7319	0.7203	0.7284	0.7388	0.7292	
CMCL	0.7154	0.7314	0.744	0.7303	0.729	0.7438	0.7511	0.7413	
VTPH	0.7733	<u>0.7870</u>	<u>0.7936</u>	<u>0.7846</u>	<u>0.7708</u>	<u>0.7840</u>	<u>0.7933</u>	0.7827	
PromptHash	0.9313	0.9759	0.9931	0.9668	0.9381	0.9761	0.9934	0.9692	

Methods		I2T		T21			
wethous	16 bit	32 bit	64 bit	16 bit	32 bit	64 bit	
baseline	0.7228	0.7377	0.7488	0.7303	0.7477	0.7588	
w/o (PACL + AGSF)	0.8278	0.8555	0.8656	0.7996	0.8272	0.8338	
w/o (TAAP + PACL)	0.7668	0.7838	0.7893	0.7696	0.7841	0.7902	
w/o (AGSF)	0.8377	0.8584	0.8709	0.8157	0.8313	0.846	
w/o (PACL)	0.9013	0.945	0.9639	0.906	0.9517	0.9676	
PromptHash	0.9313	0.9759	0.9931	0.9381	0.9761	0.9934	

Research

Experiments the **NUS-WIDE** on dataset show that the TAAP module alleviates text semantic truncation and enhances text feature representation. The AGSF module adaptively fuses multimodal semantics, retaining useful information and filtering out redundancy. Aligning global and local prompt tokens (PACL) further highlights relevant semantics and suppresses background noise. Overall, PromptHash demonstrates superior performance and robustness.

PR Curve



Precision-Recall (PR) Curve Results on the Three Benchmark Datasets

Conclusion & Future Work

In our study, we observed that all three commonly used public cross-modal hashing datasets contain substantial noise that adversely affects retrieval performance, with the issue being particularly prominent in the MS COCO dataset. Moreover, the text annotations in the other two datasets are based on discrete word labels rather than natural sentences. For future work, we propose to optimize the original annotated texts and images by leveraging diffusion models for image enhancement and employing large language models such as GPT-4 to reconstruct text annotations into prompt-like sentences. Additionally, we will explore integrating weakly-supervised segmentation techniques, introducing CAM-based image prompts as retrieval targets, to further improve retrieval performance.

Thank you for watching