

GeoDepth

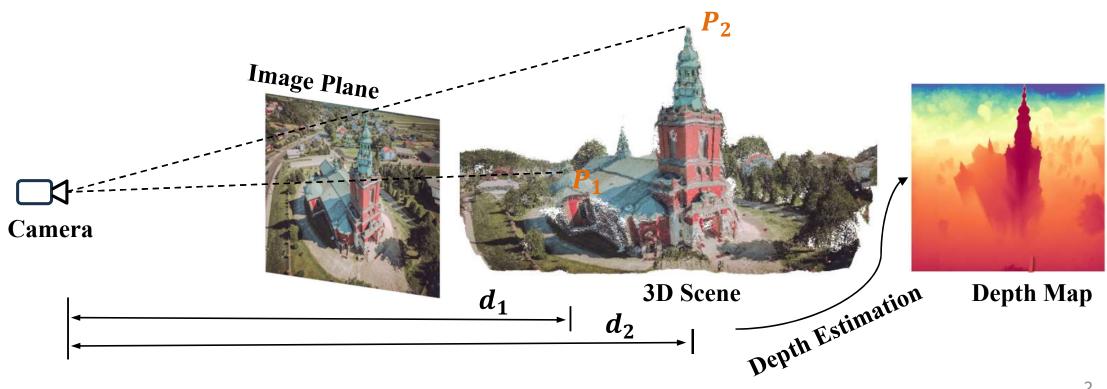
From Point-to-Depth to Plane-to-Depth Modeling for Self-Supervised Monocular Depth Estimation

Haifeng Wu¹, Shuhang Gu¹, Lixin Duan¹, Wen Li^{1,*}
¹University of Electronic Science and Technology of China

Monocular Depth Estimation

□ Problem Statement:

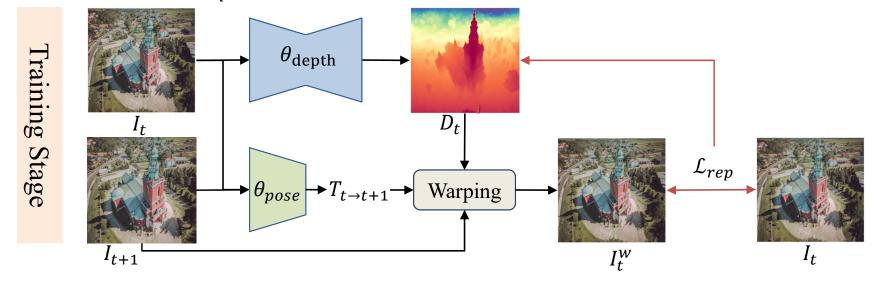
Given an image, predict the depth information of each 3D point in the corresponding scene relative to the camera plane.



Self-Supervised Monocular Depth Estimation

□ Problem Statement :

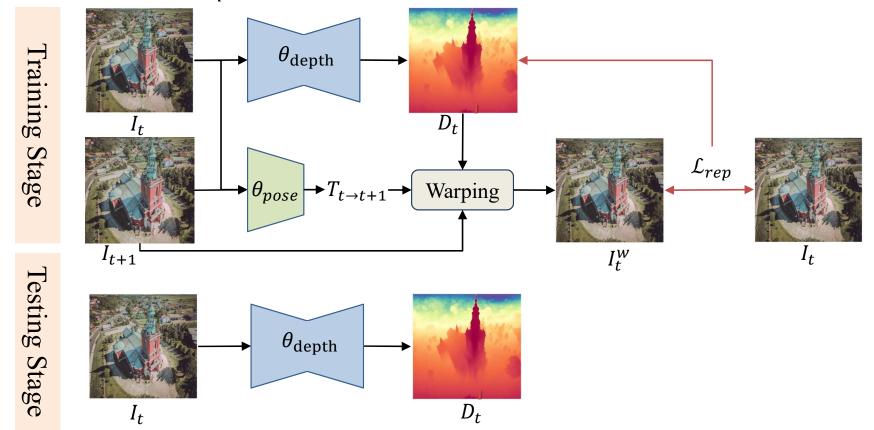
- Learn depth from disparity between neighbor frames without depth GTs (expensive and sparse)
- Reprojection loss \mathcal{L}_{rep} : photometric error I_t and I_t^w



Self-Supervised Monocular Depth Estimation

□ Problem Statement :

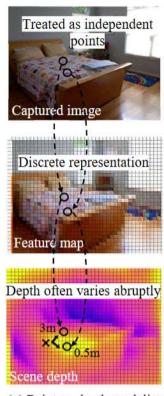
- Learn depth from disparity between neighbor frames without depth GTs (expensive and sparse)
- Reprojection loss \mathcal{L}_{rep} : photometric error I_t and I_t^w



Depth Jump Problem

□ Existing Modeling:

- *Point-to-Depth* Modeling (a point-wise prediction problem)
- => Depth values for points located in the same region may jump dramatically

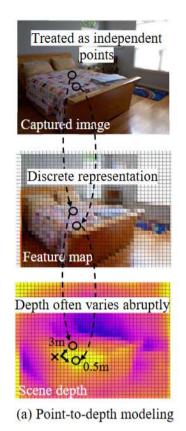


(a) Point-to-depth modeling

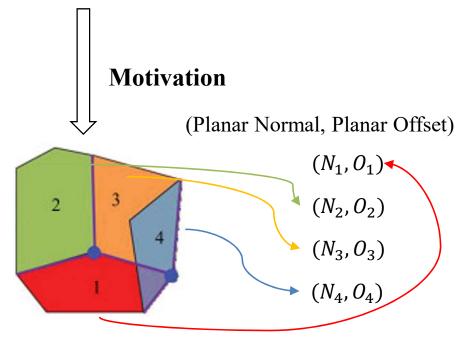
Depth Jump Problem

□ Existing Modeling:

- *Point-to-Depth* Modeling (a plane parameter prediction problem)
- => Depth values for points located in the same region may jump dramatically



Ignoring the geometric structure of the scene?

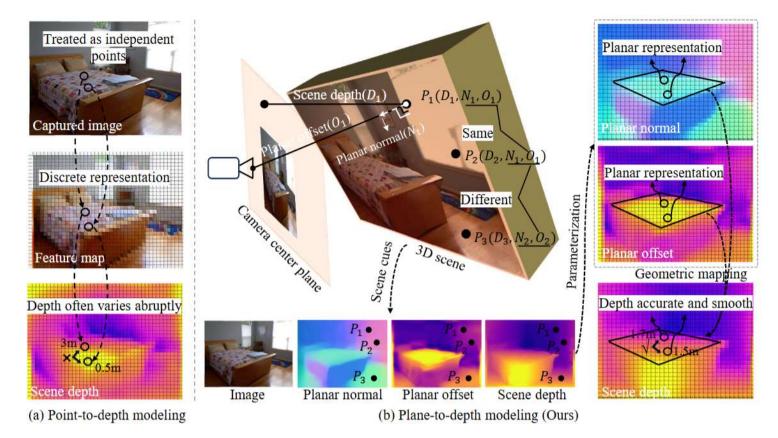


Geometric parameter modeling

Depth Jump Problem

□ Our Modeling:

- *Plane-to-Depth* Modeling (a point-wise prediction problem)
- => Depth values for points located in the same region are accurate and smooth



□ Plane-to-Depth Modeling:

3D scene plane parameterization:

$$\pi = \{\boldsymbol{n}_k, \boldsymbol{o}_k\}_{k=1}^M$$
 n: normal **o**:offset

Correlation between depth and the plane:

$$\boldsymbol{n}_i^T \boldsymbol{P} = \boldsymbol{o}_i$$
 — Point-normal form

$$\widetilde{p} = P/(dK^{-1})$$
 — Projective geometry

 $\widetilde{\boldsymbol{p}}$: 2D point

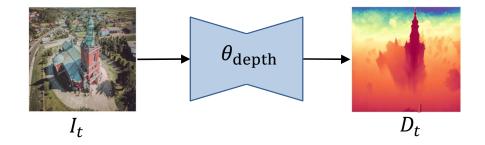
d: Depth

Plane-to-Depth modeling:

$$\mathbf{D}(p) = \frac{\mathbf{O}(p)}{\mathbf{N}^{T}(p)\mathbf{K}^{-1}\widetilde{\mathbf{p}}}$$

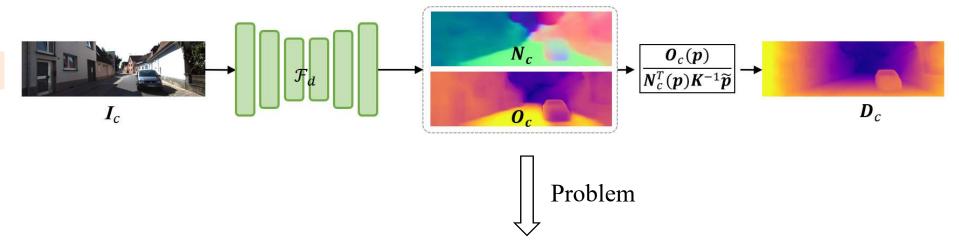
□ Pipeline:

Previous



Ours $I_{c} \longrightarrow I_{c} \longrightarrow$

□ Pipeline:



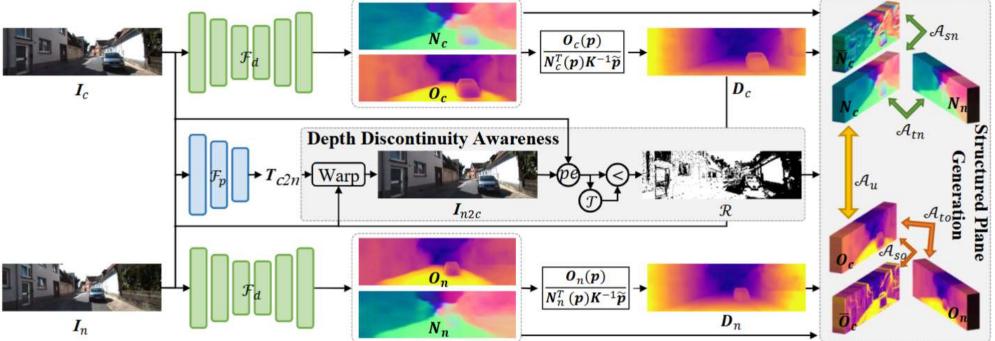
w/o geometric constraint

Input sample

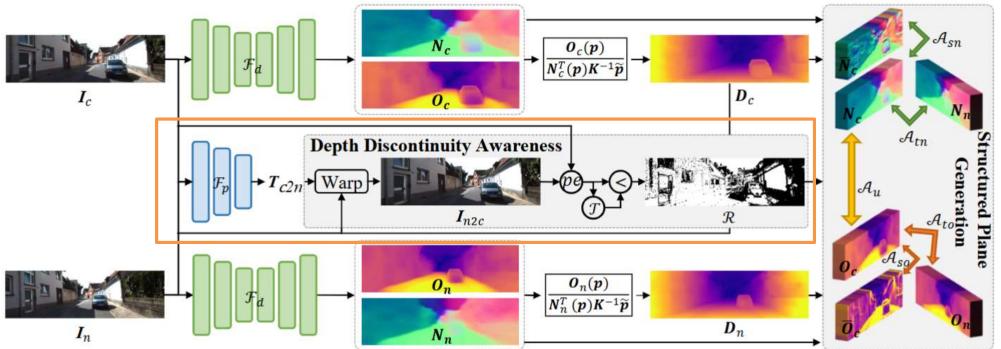
Planar normal

Planar offset

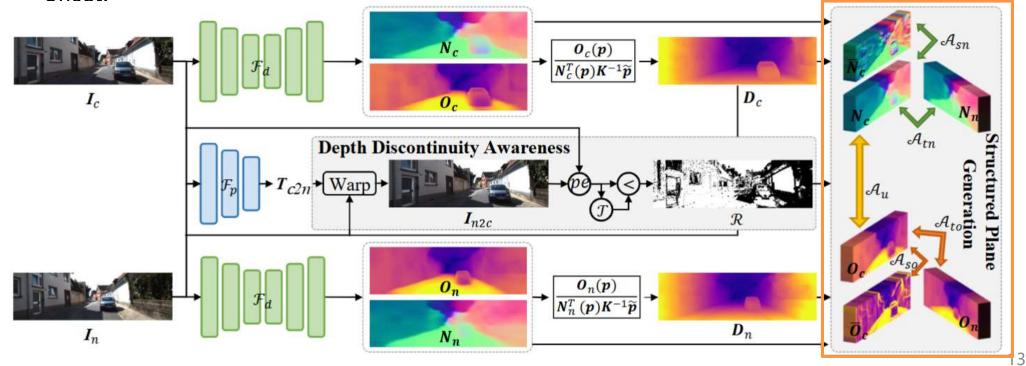
- Depth Discontinuity Awareness Module: Identifying the primary planar regions.
- Structured Plane Generation Module: 1. Utilizes spatio-temporal geometric cues to constraint the planar normal and planar offset of target image. 2. Jointly optimizes the planar normal and planar offset.



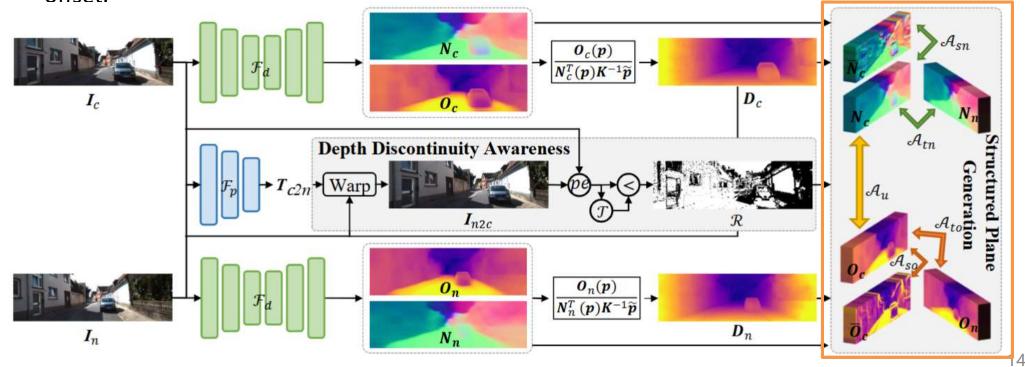
- Depth Discontinuity Awareness Module: Identifying the primary planar regions.
- Structured Plane Generation Module: 1. Utilizes spatio-temporal geometric cues to constraint the planar normal and planar offset of target image. 2. Jointly optimizes the planar normal and planar offset.



- Depth Discontinuity Awareness Module: Identifying the primary planar regions.
- Structured Plane Generation Module: 1. Utilizes spatio-temporal geometric cues to constraint the planar normal and planar offset of target image. 2. Jointly optimizes the planar normal and planar offset.



- Depth Discontinuity Awareness Module: Identifying the primary planar regions.
- Structured Plane Generation Module: 1. Utilizes spatio-temporal geometric cues to constraint the planar normal and planar offset of target image. 2. Jointly optimizes the planar normal and planar offset.

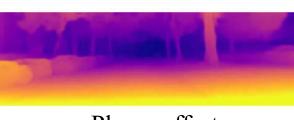


□ Pipeline:

w/o
geometric
constraint

Input sample

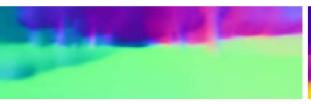
Planar normal



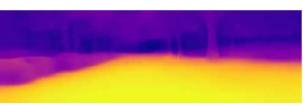
Planar offset

w geometric constraint

Input sample



Planar normal



Planar offset

Experimental Results

☐ Quantitative Results on Outdoor Datasets (KITTI & Make3D):

Dataset	Method	Size	Mod	Train	Test	RMSE↓I	RMSE log	√Sq Rel↓	Abs Rel↓	$\delta < 1.25 \uparrow$	$\delta < 1.25^2 \uparrow$	$\delta < 1.25^3 \uparrow$
	Monodepth [12]	512×256		V	1	5.927	0.247	1.344	0.148	0.803	0.922	0.964
	3Net [35]	512×256	S	V	1	5.888	0.208	1.201	0.119	0.844	0.941	0.978
	Monodepth2 [13]	640×192		1	1	4.960	0.208	0.873	0.109	0.864	0.948	0.975
	BRNet [19]	640×192	S	1	V	4.716	0.197	0.876	0.103	0.954	0.978	
	Monodepth2 [13]	640×192	MS	V	1	4.750	0.196	0.818	0.106	0.874	0.957	0.979
	DepthHints [48]	640×192	MS	√	1	4.627	0.189	0.769	0.105	0.875	0.959	0.982
	HR-Depth [32]	640×192	MS	1	1	4.612	0.185	0.785	0.107	0.887	0.962	0.982
	R-MSFM6 [67]	640×192	MS	✓	✓	4.625	0.189	0.787	0.111	0.882	0.961	0.981
_	Monodepth2 [13]	640×192	M	V	\	4.863	0.193	0.903	0.115	0.877	0.959	0.971
KITTI	HR-Depth [32]	640×192		√	✓	4.632	0.185	0.792	0.109	0.884	0.962	0.983
5	CADepth-Net [53]	640×192		✓	V	4.535	0.181	0.769	0.105	0.892	0.964	0.983
12	DIFFNet [64]	640×192		✓	✓	4.483	0.180	0.764	0.102	0.896	0.965	0.983
ш	MonoFormer [1]	640×192	M	✓	V	4.580	0.183	0.846	0.104	0.891	0.962	0.982
	SC-DepthV3 [45]	640×192	M	V	✓	4.709	0.188	0.756	0.118	0.864	0.960	0.984
	SRD-Depth [30]	640×192		√	V	4.619	0.186	0.762	0.111	0.877	0.961	0.983
	Swin-Depth [40]	640×192		√	√	4.510	0.182	0.739	0.106	0.890	0.964	0.984
	Lite-Mono [60]	640×192		✓	V	4.561	0.183	0.765	0.107	0.886	0.963	0.983
	ShuffleMono [29]	640×192		V	V	4.821	0.193	0.850	0.114	0.872	0.957	0.980
	Liu et al. [29]	640×192		✓	✓	4.724	0.187	0.747	0.114	0.863	0.960	0.984
	Dynamo-Depth [46]			V	V	4 505	0.183	0.758	0.112	0.873	0.050	0.084
j	GeoDepth	640×192	M	√	✓	4.381	0.176	0.694	0.100	0.897	0.966	0.984
	Monodepth2 [13]	640×192		×	1	7.418	0.163	3.589	0.322	i-	-	-
	HR-Depth [32]	640×192	M	×	1	7.024	0.159	3.208	0.315	-	-	-
	CADepth-Net [53]	640×192	M	×	✓	7.066	0.159	3.086	0.312	-	-	-
3D	DIFFNet [64]	640×192		×	\	7.008	0.155	3.313	0.309	-	-	-
é	Lite-Mono [60]	640×192	M	×	√	6.981	0.158	3.060	0.305	1.7		1.75
Make3D	Zhao <i>et al</i> . [62]	640×192	M	×	1	7.095	0.158	3.200	0.316	-	-	-
	Xiong et al. [52]	640×192		×	✓	7.005	0.161	3.102	0.319	-	-	_
	GeoDepth	640×192	M	×	/	6.735	0.153	2.750	0.296	-	15	12

• KITTI:

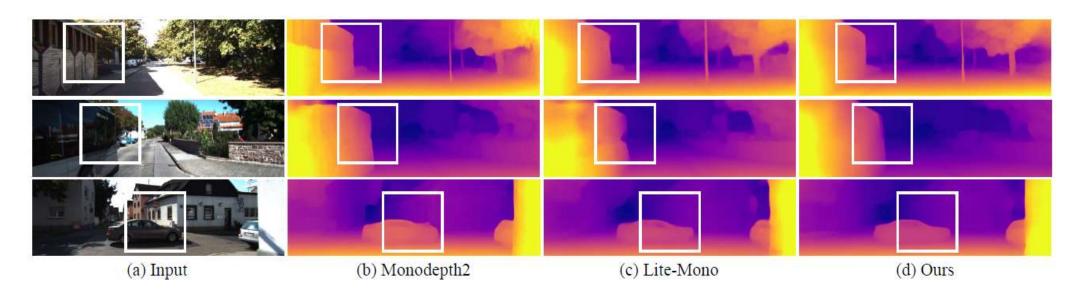
- ✓ In-domain testing
- ✓ Verifying robustness

Make3D:

- ✓ Cross-domain testing
- ✓ Verifying generalization

Experimental Results

□ Qualitative Results on Outdoor Datasets (KITTI):



- Existing Methods: Inconsistencies in planar regions and noticeable errors along object edges
- Ours: Preserving both planar structures and sharp boundaries.

☐ Quantitative Results on Indoor Datasets (NYUv2 & ScanNet):

Dataset	Method	Size	Mode	Train	Test	RMSE↓	Abs Rel↓	δ <1.25 \uparrow	$\delta < 1.25^2 \uparrow$	$\delta < 1.25^{3} \uparrow$
į	MovingIndoor [65]	320×256	M	\	√	0.712	0.208	0.674	0.900	0.968
	Monodepth2 [13]	320×256	M	√	\	0.601	0.160	0.767	0.949	0.988
	P ² Net [57]	320×256	M	✓	✓	0.599	0.159	0.772	0.942	0.984
7	SC-DepthV1 [4]	320×256	M	✓	✓	0.639	0.159	0.734	0.937	0.983
JV	PLNet [22]	320×256	M	✓	\checkmark	0.562	0.151	0.790	0.953	0.989
NYUV	StructDepth [27]	320×256	M	✓	✓	0.540	0.142	0.813	0.954	0.988
	ADPDepth [43]	320×256	M	√	\	0.592	0.165	0.753	0.934	0.981
	F ² Depth [17]	320×256	M	V	√	0.569	0.153	0.787	0.950	0.987
	Guo et al. [18]	320×256	M	✓	\	0.567	0.152	0.792	0.950	0.988
,	Ours	320×256	M	✓	✓	0.520	0.134	0.833	0.963	0.991
9	MovingIndoor [65]	320×256	M	×	√	0.483	0.212	0.650	0.905	0.976
	Monodepth2 [13]	320×256	M	×	√	0.458	0.200	0.672	0.922	0.981
20.000	TrainFlow [63]	320×256	M	×	√	0.415	0.179	0.726	0.927	0.980
Vet	P ² Net [57]	320×256	M	×	✓	0.420	0.175	0.740	0.932	0.982
n l	PLNet [22]	320×256	M	×	\checkmark	0.414	0.176	0.735	0.939	0.985
ScanNet	IFMNet [49]	320×256	M	×	√	0.402	0.170	0.758	0.940	0.989
	SC-Depthv1 [4]	320×256	M	×	\	0.392	0.169	0.749	0.938	0.983
	StructDepth [27]	320×256	M	×	\	0.400	0.165	0.754	0.030	0.085
	GeoDepth	320×256	M	×	\	0.387	0.161	0.769	0.946	0.987

• **NYUv2**:

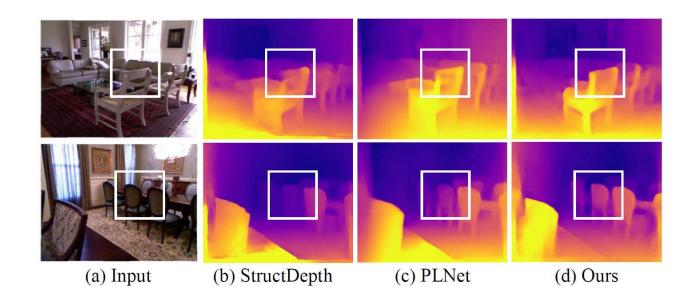
- ✓ In-domain testing
- ✓ Verifying robustness

ScanNet:

- ✓ Cross-domain testing
- ✓ Verifying generalization

Experimental Results

□ Qualitative Results on Indoor Datasets (NYUv2):



- Existing Methods: Inconsistencies in planar regions and noticeable errors along object edges
- Ours: Preserving both planar structures and sharp boundaries.

Experimental Results

□ Ablation Study on Outdoor Datasets (KITTI):

◆ The effectiveness of each design choice

Method	P2D	SPG	DDA	Sq Rel↓	RMSE ↓	$\delta < 1.25 \uparrow$	#Params
Baseline				0.751	4.471	0.895	9.98M
+P2D	✓			0.740	4.436	0.896	10.0M
+P2D+SPG	√	\		0.722	4.412	0.896	10.0M
GeoDepth	V	\	\	0.694	4.381	0.897	10.0M

P2D: Plane-to-Depth Modeling

SGP: Structured Plane Generation Module

DDA: Depth Discontinuity Awareness Module

◆ Like-for-like comparisons

Method	Backbone	Sq Rel↓	RMSE ↓	$\delta < 1.25 \uparrow$
CADepth-Net	ResNet50	0.769	4.535	0.892
GeoDepth	ResNet50	0.745	4.478	0.896
RA-Depth	HRNet18	0.632	4.216	0.903
GeoDepth	HRNet18	0.624	4.169	0.904
MonoViT	MPViT	0.708	4.372	0.900
GeoDepth	MPViT	0.662	4.237	0.902

- Integrating our idea with recent SOTA frameworks
- Our method consistently outperforms these frameworks across various backbones

Summary

GeoDepth: From Point-to-Depth to Plane-to-Depth Modeling for Self-Supervised Monocular Depth Estimation

□ Problem

- Self-supervised monocular depth estimation has long been treated as a point-wise prediction problem (*Point-to-Depth*).
- Artifacts are often observed in the estimated depth map, e.g. depth values for points located in the same region may jump dramatically

□ Solution

• We propose GeoDepth, a novel self-supervised monocular depth estimation framework, which develops a *plane-to-depth* modeling strategy to address the depth discontinuity issues inherent in *point-to-depth* methods.

□ Results

- State-of-the art results outdoor dataset KITTI and Make3D;
- State-of-the art results indoor dataset NYUv2 and ScanNet;

Thank You!