

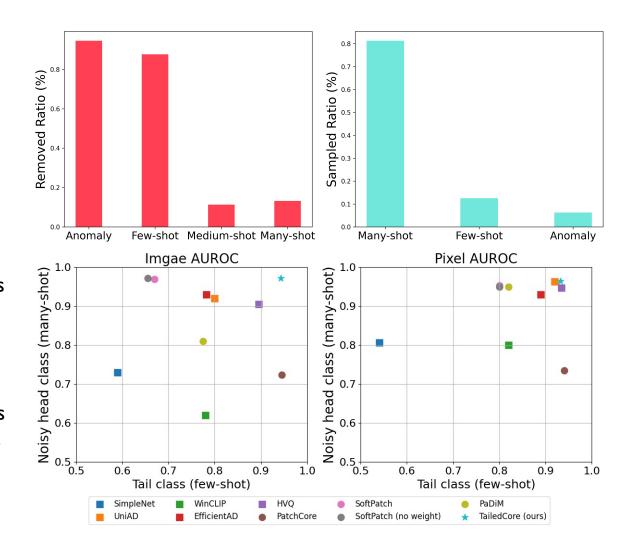
Yoon Gyo Jung, Jaewoo Park, Jaeho Yoon, Kuan-Chuan Peng, Wonchul Kim, Andrew Beng Jin Teoh, Octavia Camps

Topic:

- We address unsupervised noisy long-tailed anomaly detection which is much more challenging than solving each individually. Normal data is both contaminated with defective regions and the product class distribution is tailed and unknown.
- Previous methods address either noisy/contaminated unsupervised anomaly detection or long-tailed unsupervised anomaly detection, but none of them have focused these together at once, namely noisy long tailed anomaly detection.
- Setup: only head class is contaminated with noise and tail class (<20 samples) exsits.

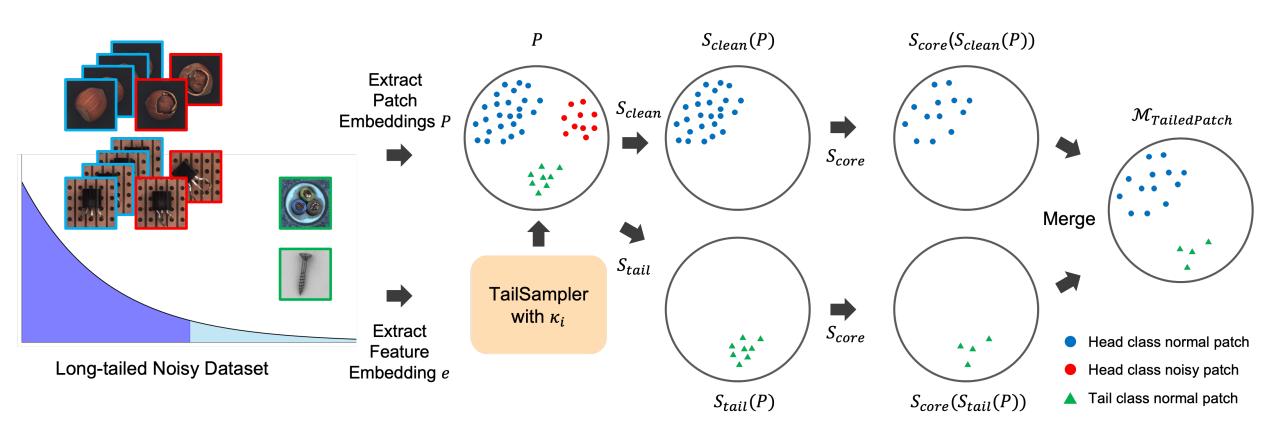
Motivation:

- Tail-versus-noise trade off:
 - I) Noise discriminative models, such as SoftPatch removes statistically minor patches assuming less frequent data is noise. However, this accidently also removes tail classes as shown in the figure above (red bar).
 - 2) **Greedy sampling** used in patchcore samples tail classes well due to the nature of greedy sampling, however, **also favors noisy patches** as well as shown in the figure above (green bar)



Solution:

- TailSampler: Selectively sample long-tail class samples while not sampling noise samples by using the global average pooled features. Global features are less affected by anomalies(noise) which are mostly local attributes.
- Denoise with existing noise discriminative methods (e.g. SoftPatch) with $S_{clean}(P)$
- Collect patch features $S_{tail}(P)$ from TailSampler and merge with denoised patches



TailSampler:

- Sort out the long-tail classes by estimating the size of classes from each samples.
- Given percentile p, we estimate the neighbors of embedding e_i , $H_i = \{e \in Z: \not \Delta(e_i, e) \leq m_i/2\}$ for every e_i , where $m_i \coloneqq \max_{e \in Z} \not \Delta(e_i, e)$, and Z is the set of all embeddings. The adaptive angle is defined to contain p-th percentile of the half-angle region

$$\alpha_i = \measuredangle(e_i, e_{p \cdot |H_i|})$$

sorted in increasing order.

• With each of the α_i , we estimate its class size based on neighborhoods of neighborhoods where $N_{\alpha}(e_i) = \{e \in Z : \measuredangle(e_i, e) < \alpha\}$ denote the neighborhood of e_i , which is the set of all train embedding e within angle α of e_i . Then class size is estimated by the mode of

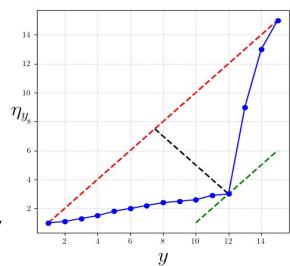
$$\kappa_i = \underset{e \in N_{\alpha_i}(e_i)}{\text{mode}} (|N_{\alpha(e)}(e)|)$$

where $\alpha(e)$ is the adaptive angle with respect to embedding e belonging to the neighborhood $N_{\alpha_i}(e_i)$ of embedding e_i .

• After estimating class sizes of each samples κ_i , estimate size of each classes $\eta_y \approx |C_y|$ inductively by

$$\eta_{1} = round\left(\frac{1}{\kappa_{(1)}}\sum_{i=1}^{\kappa_{(1)}}\kappa_{(i)}\right), \dots, \eta_{(y+1)} = round\left(\frac{1}{\kappa_{\eta_{(y+1)}}}\sum_{i=\eta_{y}+1}^{\min(\kappa_{\eta_{(y+1)},|X|)}\kappa_{(i)}\right)$$

• And determine maximum size of tail classes with elbow technique where η_i abruptly changes.



Results

tail type	Pareto			step ($K=4$)			step $(K=1)$		
class type	C_t	C_h	all	C_t	C_h	all	C_t	C_h	all
PaDiM [9] ICPR'21	82.45	80.95	82.06	77.47	81.28	79.19	71.54	81.75	75.63
HVQ [26] NeurIPS'23	83.46	80.23	82.99	82.01	85.50	83.56	74.15	90.15	80.55
WinCLIP [19] CVPR'23	89.35	90.11	90.37	91.60	88.21	90.37	91.80	88.23	90.37
AnomalyCLIP [43] ICLR'24	90.93	90.98	91.48	91.82	90.83	91.48	91.21	91.90	91.48
PatchCore [34] CVPR'22	93.33	87.59	89.18	92.19	71.18	83.83	86.36	70.48	80.01
SoftPatch [20] NeurIPS'22	84.68	86.95	87.71	67.65	97.54	79.64	60.66	97.49	75.40
TailedCore (ours)	96.55	95.24	96.12	95.82	95.34	95.71	93.54	95.77	94.43

Table 1. Anomaly classification on MVTecAD with image-level AU-ROC (%). We report the mean over 5 random seeds for each measurement. Notations: C_h / C_t : head / tail classes.

tail type	Pareto			step $(K=4)$			step $(K=1)$		
class type	C_t	C_h	all	C_t	C_h	all	C_t	C_h	all
PaDiM [9] ICPR'21	70.70	83.35	78.64	60.65	88.93	72.43	55.98	86.75	68.80
HVQ [26] NeurIPS'23	73.47	84.03	68.25	68.25	89.30	77.02	61.57	80.40	69.42
WinCLIP [19] CVPR'23	73.25	76.92	75.47	75.98	74.76	75.47	78.80	70.80	75.47
AnomalyCLIP [43] ICLR'24	81.96	82.48	82.05	82.28	81.74	82.05	83.26	80.34	82.05
PatchCore [34] CVPR'22	86.11	85.73	85.59	83.53	67.51	76.85	79.33	68.56	74.84
SoftPatch [20] NeurIPS'22	78.04	92.16	86.56	59.70	95.97	74.81	52.61	94.17	69.92
TailedCore (ours)	87.55	93.06	90.85	85.16	95.91	89.64	82.97	94.11	87.61

Table 2. Anomaly classification on VisA with image-level AUROC (%). The format and evaluation protocol are the same as Tab. 1.

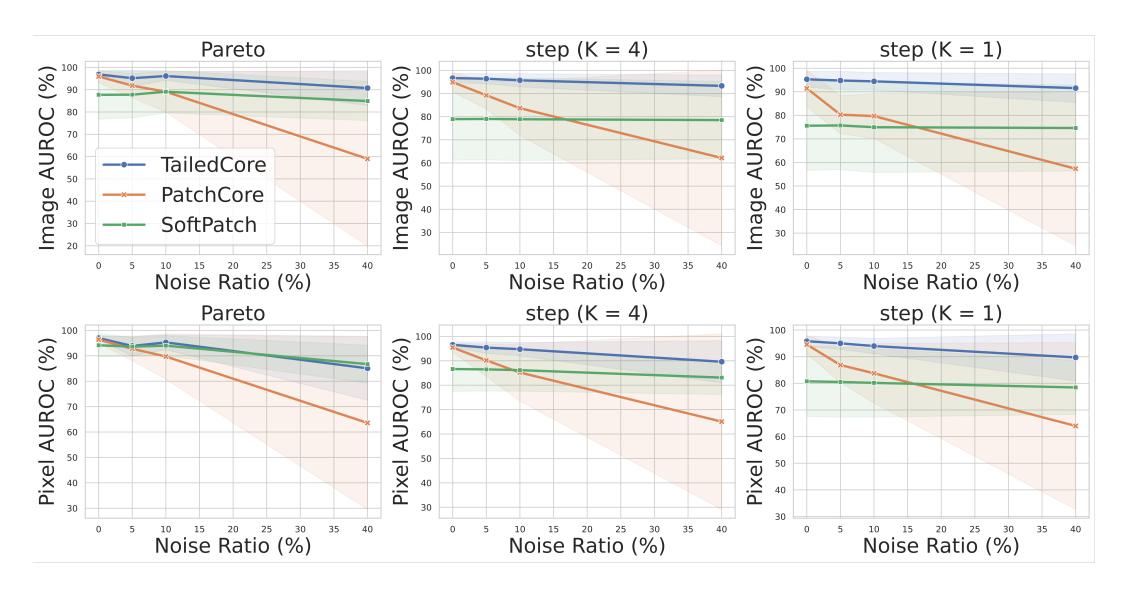
tail type	Pareto			ste	step $(K=4)$			step $(K=1)$		
class type	C_t	C_h	all	C_t	C_h	all	C_t	C_h	all	
PaDiM [9] ICPR'21	90.11	92.66	91.43	82.53	95.29	87.67	78.80	95.54	85.50	
HVQ [26] NeurIPS'23	93.63	86.85	90.55	90.73	92.58	91.53	86.36	95.20	89.90	
WinCLIP [19] CVPR'23	82.03	84.06	82.29	80.60	84.63	82.29	80.16	85.48	82.29	
AnomalyCLIP [43] ICLR'24	91.24	91.69	91.08	89.96	92.66	91.08	89.34	93.68	91.08	
PatchCore [34] CVPR'22	93.56	87.98	89.93	93.54	72.09	85.19	92.02	71.35	83.75	
SoftPatch [20] NeurIPS'22	92.19	93.83	93.41	80.98	96.49	87.24	70.34	96.89	80.99	
TailedCore (ours)	96.08	95.01	95.29	95.56	93.20	94.74	94.19	93.70	93.99	

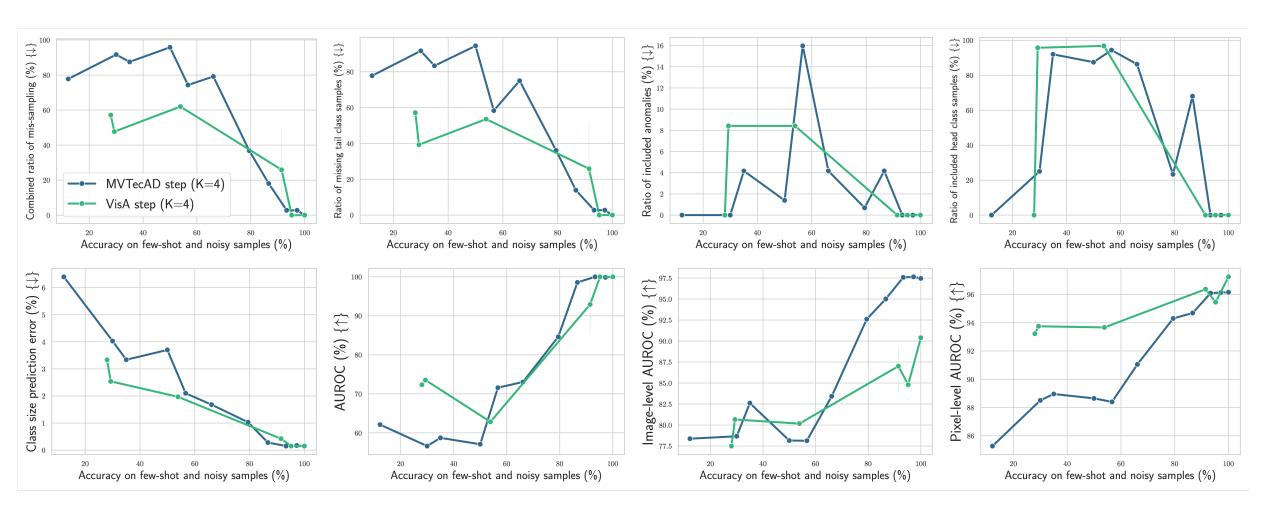
Table 3. Anomaly segmentation on MVTecAD with pixel-level AU-ROC (%). We report the mean over 5 random seeds for each measurement. Notations: C_h / C_t : head / tail classes.

tail type	Pareto			step ($K=4$)			step $(K=1)$		
class type	C_t	C_h	all	C_t	C_h	all	C_t	C_h	all
PaDiM [9] ICPR'21	89.02	95.10	82.81	83.90	97.36	89.51	82.57	96.57	88.40
HVQ [26] NeurIPS'23	95.27	97.60	96.71	93.88	98.34	95.74	90.58	95.51	92.63
WinCLIP [19] CVPR'23	71.94	73.97	73.19	74.60	71.21	73.19	73.81	72.32	73.19
AnomalyCLIP [43] ICLR'24	95.60	95.46	95.51	95.54	95.48	95.51	96.16	94.60	95.51
PatchCore [34] CVPR'22	96.84	87.99	91.13	95.39	62.96	81.88	94.11	65.30	82.10
SoftPatch [20] NeurIPS'22	93.20	96.74	95.27	83.95	97.10	89.43	80.73	96.82	87.43
TailedCore (ours)	97.98	97.25	97.48	96.80	97.02	96.89	96.12	97.39	96.65

Table 4. Anomaly segmentation on VisA with pixel-level AUROC (%). The format and evaluation protocol are the same as Tab. 3.

Ablation





Segmentation Quality

