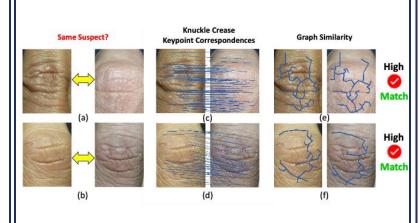
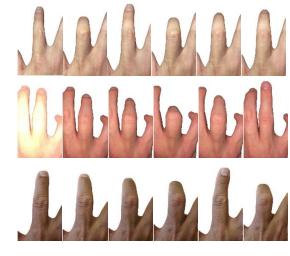
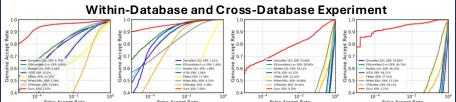

Zhenyu Zhou, Chengdong Dong, Ajay Kumar Department of Data Science and Artificial Intelligence, The Hong Kong Polytechnic University



2). Consolidate Match Evidence


Solution:


Explainable and Unprecedented Accuracy

Contribution:

1). A Multi-Pose Finger Knuckle Dataset

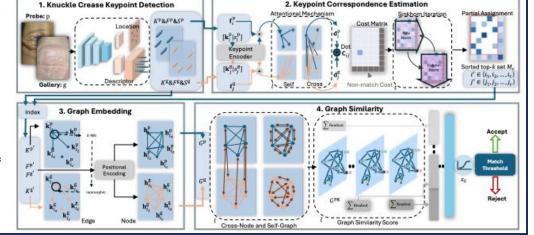
Estimation of Finger Knuckle Uniqueness Experiment

П					_			-		•		
	Δ_k	Δ_f	(m, n, w, α)	$p(T^p, T^g)$	$\overline{\lambda}_{\alpha}$	\overline{FRC}_{α}	Δ_k	Δ_f	(m,n,w,lpha)	$\overline{p(T^{\mathrm{p}},T^{\mathrm{g}})}$	$\overline{\lambda}_{\alpha}$	\overline{FRC}_{α}
ı	6.750	0.726		2.980×10^{-4}	6.167	6.780×10^{-4}	9.258	0.844				4.161×10^{-3}
ı	6.750	0.726	(69,69,17,0.05)	2.980×10^{-4}	6.613	1.860×10^{-4}	9.258	0.844		5.387×10^{-5}		
ı	6.750	0.726	(69,69,19,0.05)	2.980×10^{-4}	6.996	4.408×10^{-5}	9.258	0.844		5.387×10^{-5}		
ı				2.980×10^{-4}	7.325	9.055×10^{-6}		0.844				5.497×10^{-8}
ı				1.031×10^{-4}	2.962	2.948×10^{-9}	9.258	0.844				1.515×10^{-17}
ı				1.914×10^{-4}	4.950	4.731×10^{-6}	6.258	0.844	(69,69,4,0.05)	2.459×10^{-5}	0.230	4.385×10^{-6}
ı							7.758	0.844	(69,69,4,0.05)	3.765×10^{-5}	0.341	2.915×10^{-5}
ı				4.119×10^{-4}	8.061	1.729×10^{-3}	10.758	0.844	(69,69,4,0.05)	7.306×10^{-5}	0.624	4.709×10^{-4}
ı				5.273×10^{-4}	9.124	6.080×10^{-3}	12.258	0.844		9.494×10^{-5}		
ı				6.210×10^{-6}	N/A	N/A	9.258	0.744				8.678×10^{-9}
ı	6.750	0.676	(69,69,17,0.05)	5.309×10^{-5}	1.367	1.546×10^{-14}	9.258	0.794	(69,69,4,0.05)	1.954×10^{-5}	0.194	1.968×10^{-6}
ı	6.750	0.776	(69,69,17,0.05)	1.194×10^{-3}	12.476	8.305×10^{-2}	9.258	0.894				2.999×10^{-3}
	6.750	0.826	(69,69,17,0.05)	3.620×10^{-3}	14.893	2.421×10^{-1}	9.258	0.944	(69,69,4,0.05)	2.510×10^{-4}	1.551	2.106×10^{-2}
- 1												

3). Uniqueness of 2D Finger Knuckle Patterns

Joint Mixture Gaussian Distribution

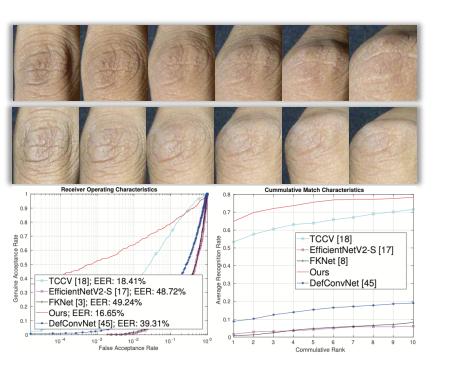
$$f(\mathbf{k} \mathbf{f} \mid \Omega) = \sum_{n=1}^{N} \epsilon_{n} f_{n}^{K} \left(\mathbf{k} \mid \boldsymbol{\mu}_{n}^{(1)}, \boldsymbol{\Sigma}_{n}^{(1)} \right) \cdot f_{n}^{F} \left(\mathbf{f} \mid \boldsymbol{\mu}_{n}^{(2)}, \boldsymbol{\Sigma}_{n}^{(2)} \right)$$

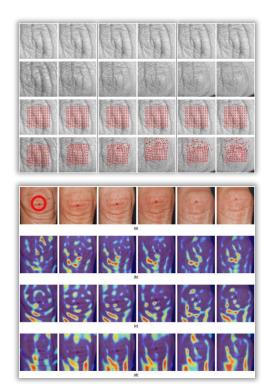

• Calculate of \overline{FRC} Index

$$p(w;T^{\mathrm{p}},T^{\mathrm{g}}) = \sum_{w}^{\infty} \frac{e^{-\lambda(T^{\mathrm{p}},T^{\mathrm{g}})}\lambda(T^{\mathrm{p}},T^{\mathrm{g}})^{w}}{w!}$$

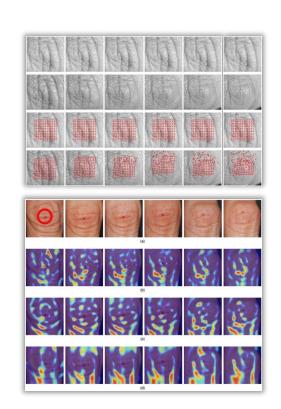
$$p(T^{\mathbf{p}},T^{\mathbf{g}}) = \int_{(\mathbf{k}^{\mathbf{p}},\mathbf{f}^{\mathbf{p}}) \in \mathcal{B}(\mathbf{k}^{\mathbf{g}},\mathbf{f}^{\mathbf{g}})} f_{T^{\mathbf{p}}} \big((\mathbf{k}^{\mathbf{p}},\mathbf{f}^{\mathbf{p}}) \big) f_{T^{\mathbf{g}}} \big((\mathbf{k}^{\mathbf{g}},\mathbf{f}^{\mathbf{g}}) \big) d\mathbf{k}^{\mathbf{p}} d\mathbf{f}^{\mathbf{p}} d\mathbf{k}^{\mathbf{g}} d\mathbf{f}^{\mathbf{g}}$$

$$\overline{FRC} = \frac{2}{z(z-1)} \sum_{TP \neq Tg} p(w; T^p, T^g)$$


2). Our Framework to Match Cross-Pose Images



Zhenyu Zhou, Chengdong Dong, Ajay Kumar Department of Data Science and Artificial Intelligence, The Hong Kong Polytechnic University



Zhenyu Zhou, Chengdong Dong, Ajay Kumar Department of Data Science and Artificial Intelligence, The Hong Kong Polytechnic University

Problem Definition:

- How to accurately match the cross-pose finger crease pattern?
- How to efficiently give the match evidences?

Samples from our collected the large-scale multi-pose finger knuckle dataset.

Multi-Pose Dataset

Zhenyu Zhou, Chengdong Dong, Ajay Kumar Department of Data Science and Artificial Intelligence, The Hong Kong Polytechnic University

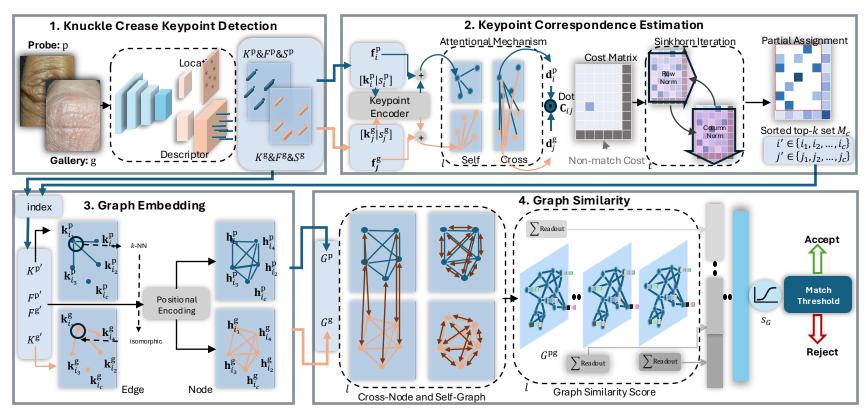
Matching Framework: Explainable and Unprecedented Accuracy

Genuine

Imposter

0). Input Image Pairs

1). Keypoint Detection


2). Correspondence Estimation

3). Graph Embedding & Matching

Ajay Kumar and Zhenyu Zhou. A method and device for biometric identification using finger images. U.S. Patent No.63/774,168, 2025.

Zhenyu Zhou, Chengdong Dong, Ajay Kumar Department of Data Science and Artificial Intelligence, The Hong Kong Polytechnic University


Theoretical Explainability: Uniqueness of Contactless 2D Finger Knuckle Patterns

1). Detected a pair of template T^p and T^g :

$$F^{p} = \{ \mathbf{f}_{i}^{p} \mid i \in \{1, 2, ..., n\} \}$$

$$K^{p} = \{ \mathbf{k}_{i}^{p} \mid i \in \{1, 2, ..., n\} \}$$

$$F^{p} = \{ \mathbf{f}_{i}^{p} \mid i \in \{1, 2, ..., n\} \}$$

$$F^{g} = \{ \mathbf{f}_{i}^{g} \mid i \in \{1, 2, ..., m\} \}$$

$$K^{g} = \{ \mathbf{k}_{i}^{g} \mid i \in \{1, 2, ..., m\} \}$$

$$K^{g} = \{ \mathbf{k}_{i}^{g} \mid i \in \{1, 2, ..., m\} \}$$

where, $k = (x, y) \in K$ and $f = (f_1, f_2, ..., f_d) \in F$

3). $p(T^{p}, T^{g})$:

2). Joint Mixture Gaussian Distribution

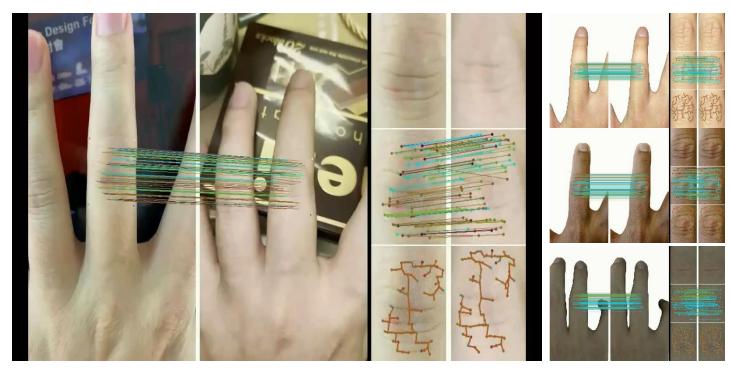
$$f(\mathbf{k},\mathbf{f}\mid\Omega) = \sum_{n=1}^{N} \epsilon_n f_n^K \left(\mathbf{k}\mid\boldsymbol{\mu}_n^{(1)},\boldsymbol{\Sigma}_n^{(1)}\right) \cdot f_n^F \left(\mathbf{f}\mid\boldsymbol{\mu}_n^{(2)},\boldsymbol{\Sigma}_n^{(2)}\right)$$

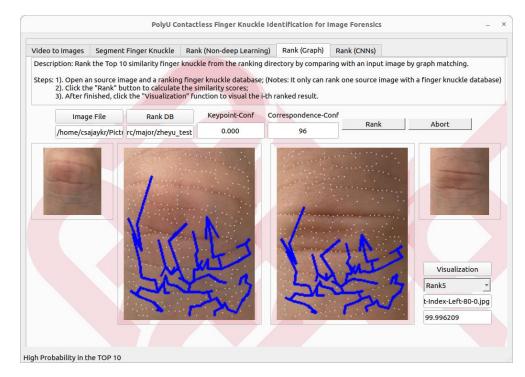
4). Calculate of \overline{FRC} Index

$$p(T^{\mathrm{p}},T^{\mathrm{g}}) = \int_{(\boldsymbol{k}^{\mathrm{p}},\boldsymbol{f}^{\mathrm{p}}) \in B(\boldsymbol{k}^{\mathrm{g}},\boldsymbol{f}^{\mathrm{g}})} f_{T^{\mathrm{p}}} \big((\boldsymbol{k}^{\mathrm{p}},\boldsymbol{f}^{\mathrm{p}}) \big) f_{T^{\mathrm{g}}} \big((\boldsymbol{k}^{\mathrm{g}},\boldsymbol{f}^{\mathrm{g}}) \big) d\boldsymbol{k}^{\mathrm{p}} d\boldsymbol{f}^{\mathrm{p}} d\boldsymbol{k}^{\mathrm{g}} d\boldsymbol{f}^{\mathrm{g}}$$

$$\lambda(T^{p}, T^{g}) = m * n * p(T^{p}, T^{g})$$

$$p(w; T^{p}, T^{g}) = \sum_{w}^{\infty} \frac{e^{-\lambda(T^{p}, T^{g})} \lambda(T^{p}, T^{g})^{w}}{w!}$$


$$\overline{FRC} = \frac{2}{z(z-1)} \sum_{T^{p} \neq T^{g}} p(w; T^{p}, T^{g})$$

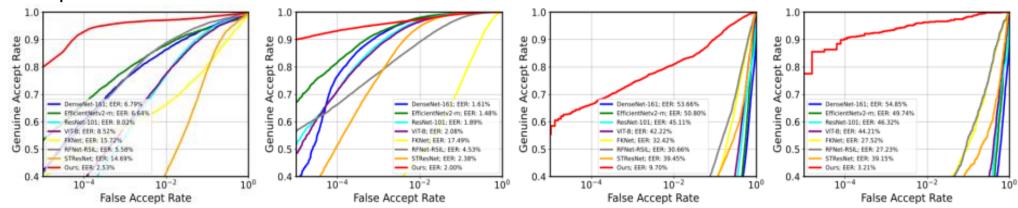


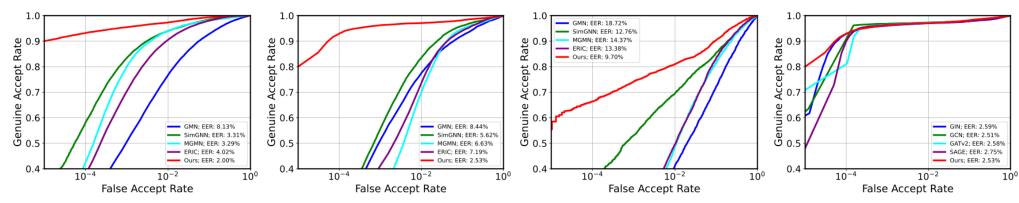
Zhenyu Zhou, Chengdong Dong, Ajay Kumar Department of Data Science and Artificial Intelligence, The Hong Kong Polytechnic University

Experiments: Explainable Visual Graphs

Knuckle Crease Keypoint Correspondence Estimation

High Security and Law Enforcement Online System




Zhenyu Zhou, Chengdong Dong, Ajay Kumar Department of Data Science and Artificial Intelligence, The Hong Kong Polytechnic University

Experiments: Within-Database and Cross-Database

Compare with CNN or attention-based methods

Compare with graph-based methods

Zhenyu Zhou, Chengdong Dong, Ajay Kumar Department of Data Science and Artificial Intelligence, The Hong Kong Polytechnic University

Experiments: Estimation of 2D Finger Knuckle Uniqueness

Estimated Resolution for This Dataset: ~ 200 dpi

$\Delta_{m{k}}$	$\Delta_{m{f}}$	(m,n,w,α)	$\overline{p(T^{ m p},T^{ m g})}$	$\overline{\lambda}_{lpha}$	\overline{FRC}_{lpha}
6.750	0.726	(69,69,15,0.05)	2.980×10^{-4}	6.167	6.780×10^{-4}
6.750	0.726	(69,69,17,0.05)	2.980×10^{-4}	6.613	1.860×10^{-4}
6.750	0.726	(69,69,19,0.05)	2.980×10^{-4}	6.996	4.408×10^{-5}
6.750	0.726	(69,69,21,0.05)	2.980×10^{-4}	7.325	9.055×10^{-6}
3.750	0.726	(69,69,17,0.05)	1.031×10^{-4}	2.962	2.948×10^{-9}
5.250	0.726	(69,69,17,0.05)	1.914×10^{-4}	4.950	4.731×10^{-6}
8.250	0.726	(69,69,17,0.05)	4.119×10^{-4}	8.061	1.729×10^{-3}
9.750	0.726	(69,69,17,0.05)	5.273×10^{-4}	9.124	6.080×10^{-3}
6.750	0.626	(69,69,17,0.05)	6.210×10^{-6}	N/A	N/A
6.750	0.676	(69,69,17,0.05)	5.309×10^{-5}	1.367	1.546×10^{-14}
6.750	0.776	(69,69,17,0.05)	1.194×10^{-3}	12.476	8.305×10^{-2}
6.750	0.826	(69,69,17,0.05)	3.620×10^{-3}	14.893	2.421×10^{-1}

Estimated Resolution for This Dataset: ~ 760 dpi

$\Delta_{m{k}}$	$\Delta_{m{f}}$	(m,n,w,α)	$\overline{p(T^{ m p},T^{ m g})}$	$\overline{\lambda}_{lpha}$	\overline{FRC}_{lpha}		
9.258	0.844	(69,69,2,0.05)	5.387×10^{-5}	0.316	4.161×10^{-3}		
9.258	0.844	(69,69,4,0.05)	5.387×10^{-5}	0.478	1.400×10^{-4}		
9.258	0.844	(69,69,6,0.05)	5.387×10^{-5}	0.601	3.328×10^{-6}		
9.258	0.844	(69,69,8,0.05)	5.387×10^{-5}	0.694	5.497×10^{-8}		
9.258	0.844	(69,69,17,0.05)	5.387×10^{-5}	0.880	1.515×10^{-17}		
6.258	0.844	(69,69,4,0.05)	2.459×10^{-5}	0.230	4.385×10^{-6}		
7.758	0.844	(69,69,4,0.05)	3.765×10^{-5}	0.341	2.915×10^{-5}		
10.758	0.844	(69,69,4,0.05)	7.306×10^{-5}	0.624	4.709×10^{-4}		
12.258	0.844	(69,69,4,0.05)	9.494×10^{-5}	0.784	1.290×10^{-3}		
9.258	0.744	(69,69,4,0.05)	5.932×10^{-6}	N/A	8.678×10^{-9}		
9.258	0.794	(69,69,4,0.05)	1.954×10^{-5}	0.194	1.968×10^{-6}		
9.258	0.894	(69,69,4,0.05)	1.247×10^{-4}	0.954	2.999×10^{-3}		
9.258	0.944	(69,69,4,0.05)	2.510×10^{-4}	1.551	2.106×10^{-2}		

Zhenyu Zhou, Chengdong Dong, Ajay Kumar Department of Data Science and Artificial Intelligence, The Hong Kong Polytechnic University

Experiments: Estimation Uniqueness using Knuckle Crease Bifurcations and Endings

Knuckle crease bifurcations & endings:

Dataset	$\Delta_{m{k}}$	$\Delta_{m{f}}$	(m,n,w,lpha)		$\overline{p(T^{ m p},T^{ m g})}$		\overline{FRC}_{lpha}	
Dataset			Bifurcation	Ending	Bifurcation	Ending	Bifurcation	Ending
	6.750	0.726	(55,55,11,0.05)	(14,14,2,0.05)	3.929×10^{-4}	4.300×10^{-4}	1.233×10^{-3}	5.843×10^{-4}
	6.750	0.726	(55,55,13,0.05)	(14,14,4,0.05)	3.929×10^{-4}	4.300×10^{-4}	2.807×10^{-4}	6.523×10^{-6}
	6.750	0.726	(55,55,15,0.05)	(14,14,6,0.05)	3.929×10^{-4}	4.300×10^{-4}	5.292×10^{-5}	4.640×10^{-8}
Hand Dorsal [30]	5.250	0.726	(55,55,11,0.05)	(14,14,2,0.05)	2.541×10^{-4}	2.661×10^{-4}	7.947×10^{-5}	1.454×10^{-4}
	8.250	0.726	(55,55,11,0.05)	(14,14,2,0.05)	5.445×10^{-4}	6.267×10^{-4}	6.028×10^{-3}	1.642×10^{-3}
	6.750	0.676	(55,55,11,0.05)	(14,14,2,0.05)	7.376×10^{-5}	1.357×10^{-4}	5.252×10^{-10}	1.903×10^{-5}
	6.750	0.776	(55,55,11,0.05)	(14,14,2,0.05)	1.508×10^{-3}	1.106×10^{-3}	1.021×10^{-1}	6.641×10^{-3}
	9.258	0.844	(61,61,3,0.05)	(8,8,1,0.05)	5.646×10^{-5}	2.068×10^{-4}	3.220×10^{-4}	9.609×10^{-5}
	9.258	0.844	(61,61,5,0.05)	(8,8,3,0.05)	5.646×10^{-5}	2.068×10^{-4}	5.419×10^{-6}	2.174×10^{-8}
	9.258	0.844	(61,61,7,0.05)	(8,8,5,0.05)	5.646×10^{-5}	2.068×10^{-4}	6.383×10^{-8}	3.146×10^{-12}
Ours	7.758	0.844	(61,61,3,0.05)	(8,8,1,0.05)	4.006×10^{-5}	1.467×10^{-4}	9.134×10^{-5}	4.670×10^{-5}
	10.758	0.844	(61,61,3,0.05)	(8,8,1,0.05)	7.548×10^{-5}	2.781×10^{-4}	9.101×10^{-4}	1.779×10^{-4}
-	9.258	0.794	(61,61,3,0.05)	(8,8,1,0.05)	2.103×10^{-5}	9.755×10^{-5}	9.293×10^{-6}	2.078×10^{-5}
	9.258	0.894	(61,61,3,0.05)	(8,8,1,0.05)	1.303×10^{-4}	3.858×10^{-4}	4.425×10^{-3}	3.373×10^{-4}