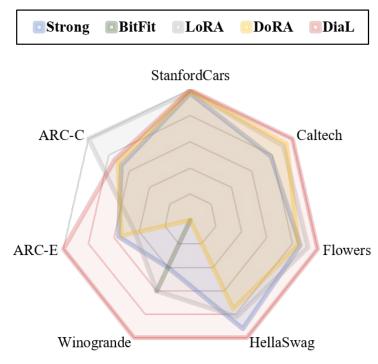

Parameter Efficient Mamba Tuning via Projector-targeted Diagonal-centric Linear Transformation

Seokil Ham, Hee-Seon Kim, Sangmin Woo, Changick Kim Korea Advanced Institute of Science and Technology (KAIST)

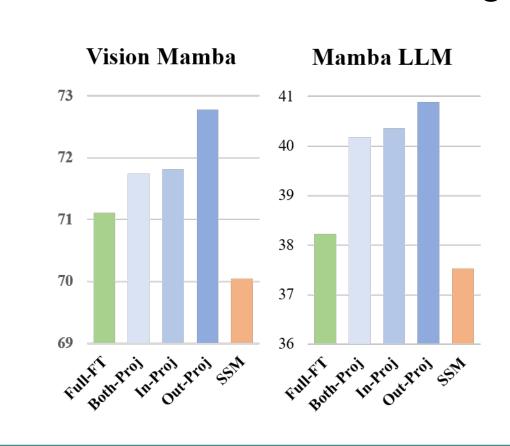
Mamba Architecture

- Mamba architecture introduces selective SSMs and hardware-aware operations for dynamic and linear-time computation with respect to input size.
- Both Mamba LLM and Vision Mamba share the block below.



Motivation

- PEFT methods for Mamba remain largely unexplored.
- We observe that Projectors play a key role in Mamba PEFT.


Contributions

- First investigation of Projectors in Mamba architecture.
- Based on our analysis of projectors, we propose **ProDiaL**, the first projector-targeted PEFT method for Mamba.
- Experiments on both Mamba LLM and Vision Mamba show that applying ProDiaL and other PEFT methods to projectors significantly outperforms targeting other components.

Observations

Projectors play a more critical role than SSMs in learning downstream task knowledge.

Diagonal Entries in T are dominant.

$$T_{det} = W^{-1}W',$$

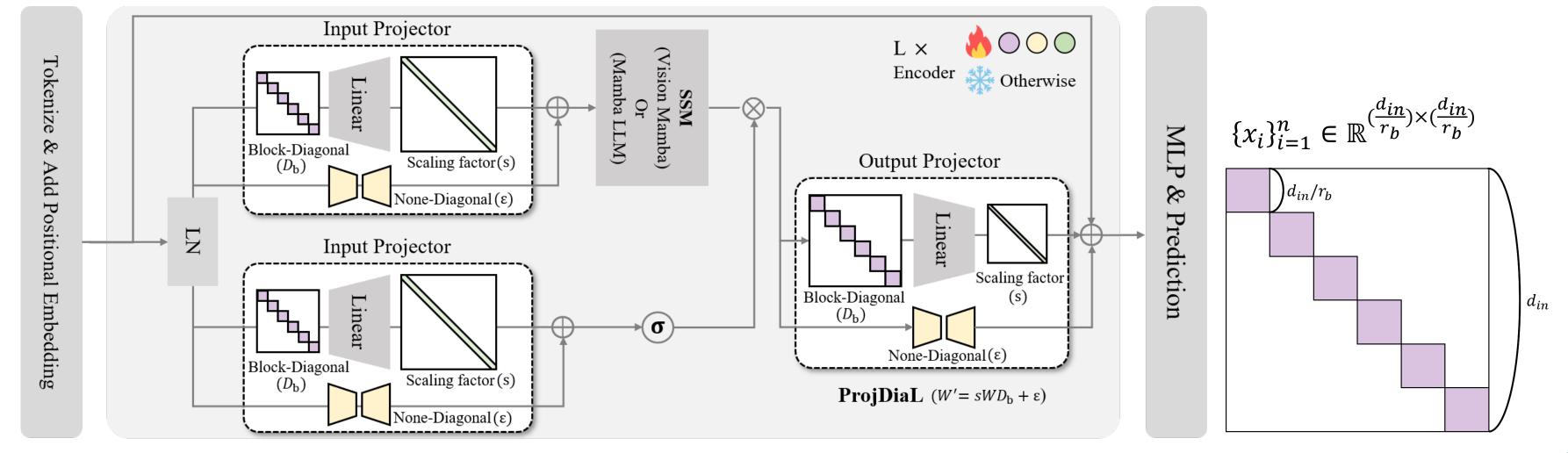
$$W': \text{Fine-tuned Projector, } W: \text{Pre-trained Projector}$$

$$\frac{0}{25} + \frac{0.954}{0.014} + \frac{0.020}{0.033} + \frac{0.017}{0.016} + \frac{0.002}{0.025} + \frac{0.011}{0.040} + \frac{0.882}{0.024} + \frac{0.021}{0.0175} + \frac{0.011}{0.040} + \frac{0.882}{0.024} + \frac{0.021}{0.0175} + \frac{0.011}{0.040} + \frac{0.882}{0.024} + \frac{0.022}{0.017} + \frac{0.011}{0.040} + \frac{0.882}{0.024} + \frac{0.022}{0.025} + \frac{0.0$$

W' = WT

Method: ProDiaL

- We propose a novel Mamba Projector-targeted PEFT method, ProDiaL
 (Projector-targeted Diagonal-centric Linear Transformation).
- ProDiaL decomposes T into Diagonal and Off-diagonal Entries, and trains them separately.


$$W' = WT = sWD_b + \epsilon,$$

$$D_b = [\mathbb{I} - relu(\mathbb{I} * D_a)] + (\mathbf{1} - \mathbb{I}) * D_a,$$

$$D_a = diag(x_1, x_2, ..., x_n),$$

$$\epsilon = B_{\epsilon}A_{\epsilon}$$

s: learnable scaling parameter, A_{ϵ} and B_{ϵ} are low-rank matrices.

Experiment Results

Performance on Mamba1 architecture.

		Mamba LLM				Vision Mamba				
	Method	HellaSwag	Winogrande	ARC-E	ARC-C	Avg	StanfordCars	Caltech	Flowers	Avg.
Baselines	Full-FT	38.23 (130.00M)	53.12 (130.00M)	53.54 (130.00M)	28.84 (130.00M)	43.43	90.06 (7.00M)	92.86 (7.00M)	92.05 (7.00M)	91.66
	Linear Probing	-	-	-	-	-	57.46 (0.04M)	91.10 (0.02M)	59.90 (0.02M)	69.49
	BitFit [49]	35.69 (0.07M)	53.12 (0.07M)	52.86 (0.07M)	26.88 (0.07M)	42.14	65.51 (0.08M)	93.71 (0.06M)	78.84 (0.06M)	79.35
	Strong [17]	38.66 (3.80M)	53.04 (3.80M)	54.17 (3.80M)	28.67 (3.80M)	43.64	84.78 (0.96M)	95.70 (0.94M)	86.76 (0.94M)	89.08
Both-Proj	FT	40.18 (84.94M)	52.57 (84.94M)	54.38 (84.94M)	29.52 (84.94M)	44.16	89.67 (5.35M)	95.01 (5.33M)	92.00 (5.33M)	92.22
	LoRA	38.33 (2.36M)	53.12 (2.36M)	53.87 (2.36M)	29.52 (2.36M)	43.71	85.06 (0.63M)	96.01 (0.61M)	87.32 (0.61M)	89.46
	DoRA	38.13 (2.45M)	52.88 (2.45M)	54.12 (2.45M)	28.75 (2.45M)	43.47	85.18 (0.69M)	96.09 (0.65M)	86.60 (0.65M)	89.29
	ProDiaL	38.92 (2.42M)	53.28 (2.42M)	55.18 (2.38M)	28.84 (2.38M)	44.06	85.38 (0.67M)	96.24 (0.65M)	88.00 (0.65M)	89.87
In-Proj	FT	40.36 (56.62M)	53.20 (56.62M)	54.59 (56.62M)	29.61 (56.62M)	44.44	89.62 (3.58M)	95.24 (3.56M)	91.02 (3.56M)	91.96
	LoRA	38.46 (1.48M)	52.80 (1.48M)	53.87 (1.48M)	28.41 (1.48M)	43.39	82.12 (0.41M)	95.78 (0.39M)	85.71 (0.39M)	87.87
	DoRA	38.08 (1.55M)	52.64 (1.55M)	54.04 (1.55M)	28.50 (1.55M)	43.32	82.17 (0.43M)	95.55 (0.41M)	85.95 (0.41M)	87.89
	ProDiaL	38.41 (1.49M)	52.96 (1.49M)	54.50 (1.25M)	29.61 (1.25M)	43.87	82.45 (0.42M)	95.93 (0.41M)	85.97 (0.33M)	88.12
Out-Proj	FT	40.89 (28.31M)	52.80 (28.31M)	55.09 (28.31M)	29.27 (28.31M)	44.51	88.86 (1.81M)	95.63 (1.77M)	91.45 (1.77M)	91.98
	LoRA	37.30 (0.89M)	53.12 (0.89M)	53.66 (0.89M)	28.54 (0.89M)	43.08	77.81 (0.26M)	95.40 (0.24M)	80.60 (0.24M)	84.60
	DoRA	37.19 (0.90M)	52.88 (0.90M)	53.66 (0.90M)	28.67 (0.90M)	43.10	77.70 (0.28M)	95.47 (0.26M)	80.97 (0.26M)	84.71
	ProDiaL	38.19 (0.92M)	53.75 (0.92M)	54.84 (0.90M)	30.80 (0.90M)	44.40	78.00 (0.27M)	95.55 (0.25M)	81.90 (0.25M)	85.15

Performance on Mamba2 architecture.

	Method	HellaSwag	Winogrande	ARC-E	ARC-C	Avg
	Full-FT	38.23 (130.00M)	53.12 (130.00M)	53.54 (130.00M)	28.84 (130.00M)	43.43
•=	FT	38.76 (90.1M)	53.12 (90.1M)	50.67 (90.1M)	28.84 (90.1M)	42.84
Both-Proj	LoRA	38.50 (2.47M)	53.35 (2.47M)	52.36 (2.47M)	30.20 (2.47M)	43.60
oth	DoRA	35.24 (2.57M)	52.01 (2.57M)	47.18 (2.57M)	24.15 (2.57M)	39.65
m	ProDiaL	38.57 (2.44M)	53.83 (2.00M)	53.03 (2.33M)	30.46 (2.22M)	43.97
	FT	39.89 (61.8M)	53.35 (61.8M)	51.56 (61.8M)	27.22 (61.8M)	43.01
Proj	LoRA	37.32 (1.58M)	53.43 (1.58M)	52.02 (1.58M)	30.03 (1.58M)	43.20
In-Proj	DoRA	35.24 (1.66M)	52.01 (1.66M)	47.18 (1.66M)	24.15 (1.66M)	39.65
	ProDiaL	37.91 (0.98M)	53.75 (0.89M)	53.03 (0.98M)	30.29 (0.93M)	43.75
	FT	40.62 (28.3M)	53.43 (28.3M)	54.08(28.3M)	29.10 (28.3M)	44.31
Proj	LoRA	37.44 (0.89M)	53.28 (0.89M)	52.65 (0.89M)	28.50 (0.89M)	42.97
Out-Proj	DoRA	37.44 (0.90M)	53.59 (0.90M)	52.69 (0.90M)	28.92 (0.90M)	43.16
	ProDiaL	37.86 (0.90M)	53.51 (0.50M)	53.45 (0.68M)	30.29 (0.90M)	43.78

Scalability of our ProDiaL

	Method	Mamba-370M	Mamba-1.4B	Vim-small	
e	Full-FT	56.99 (370M)	61.17 (1.40B)	94.09 (25.45M)	
Base	BitFit [49]	56.99 (0.20M)	61.25 (0.39M)	96.62 (0.11M)	
Η	Strong [17]	57.14 (8.19M)	61.80 (0.06B)	96.47 (1.85M)	
œ.	FT	57.22 (302M)	61.72 (1.21B)	94.94 (21.27M)	
P1	LoRA	56.75 (6.29M)	61.72 (0.05B)	96.85 (1.22M)	
Both-Proj	DoRA	56.99 (6.54M)	61.72 (0.05B)	96.85 (1.27M)	
B	ProDiaL	57.06 (5.75M)	61.96 (0.05B)	97.16 (1.32M)	
j	FT	57.06 (201M)	61.56 (0.81B)	95.17 (14.20M)	
Pro	LoRA	56.75 (3.93M)	61.56 (0.03B)	97.16 (0.88M)	
In-Proj	DoRA	57.22 (4.13M)	61.48 (0.03B)	97.16 (0.91M)	
	ProDiaL	57.22 (3.74M)	61.56 (0.03B)	97.09 (0.82M)	
oj	FT	57.22 (101M)	61.72 (0.40B)	95.86 (7.12M)	
Out-Proj	LoRA	56.91 (2.36M)	61.56 (0.02B)	96.70 (0.48M)	
ut-	DoRA	57.22 (2.41M)	61.48 (0.02B)	96.78 (0.59M)	
0	ProDiaL	57.30 (2.02M)	61.80 (0.02B)	96.85 (0.51M)	