Doppelgangers++

Improved Visual Disambiguation with Geometric 3D Features

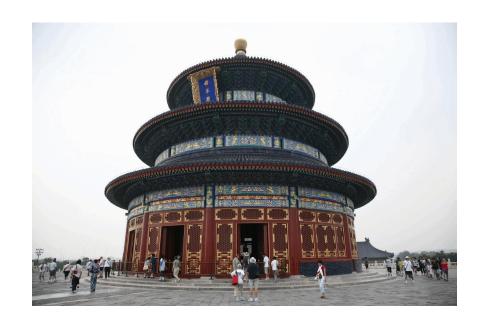
Yuanbo Xiangli¹, Ruojin Cai¹, Hanyu Chen¹, Jeffrey Byrne², Noah Snavely¹

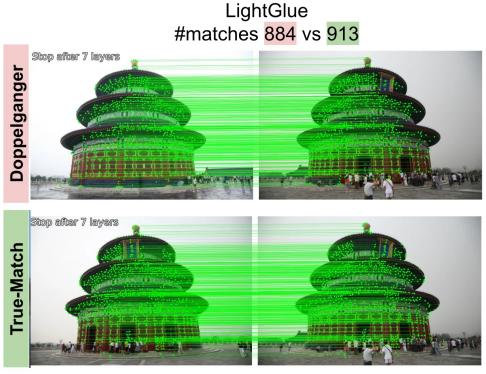
Cornell University, ²Visym Labs

Problem Revisit: Doppelgangers in 3D computer vision

Doppelgangers are <u>visually similar</u> but <u>distinct surfaces</u> that confuse 3D reconstruction systems

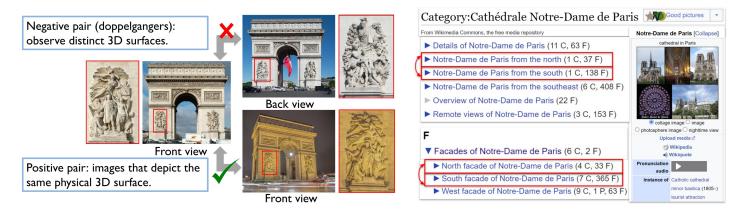
Problem Revisit: Doppelgangers in 3D computer vision

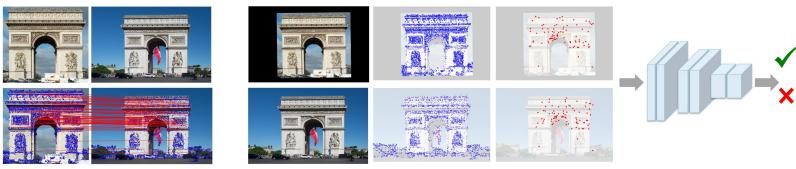

Pervasive **local feature matching** methods <u>struggle with ambiguity</u>, lacking <u>global evidence</u> to reject false matches



Problem Revisit: Doppelgangers in 3D computer vision

Pervasive **local feature matching** methods <u>struggle with ambiguity</u>, lacking <u>global evidence</u> to reject false matches

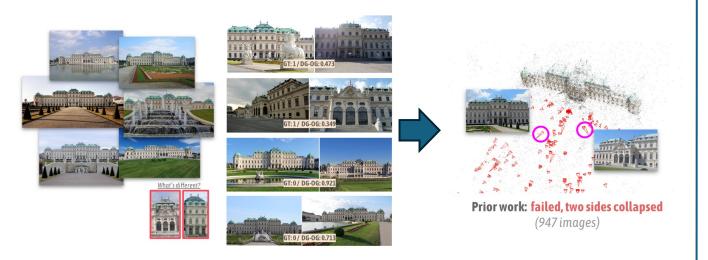


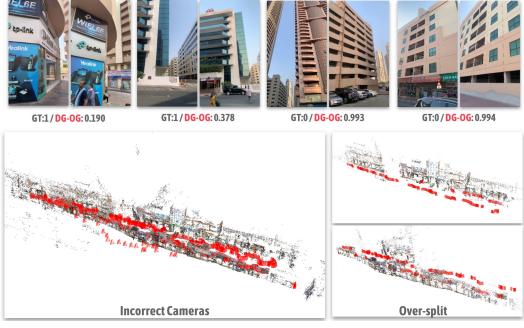

Distinguishing the indistinguishable (Yan et.al)

Prior Work

Construct a Doppelganger dataset from Wikimedia Commons

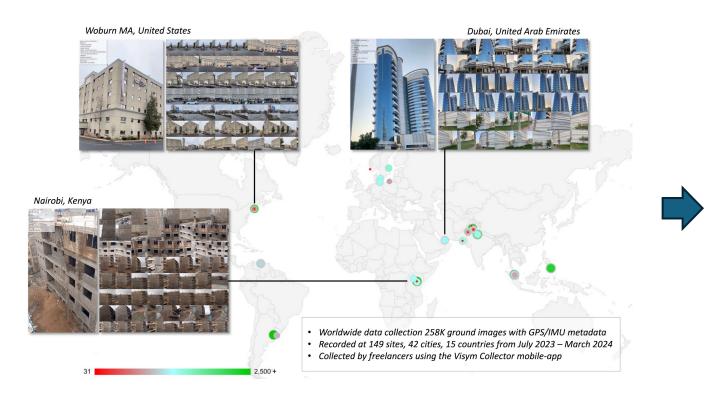
Train a classifier with keypoint and match locations (LoFTR)


(a) Image pair and keypoints and matches


(b) Aligned image pair, keypoint mask, and match mask

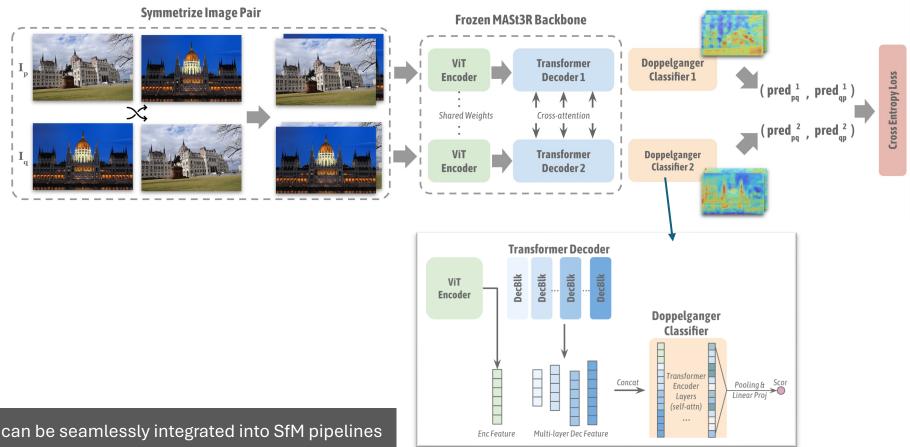
(c) Binary classifier

Challenges


- High precision is crucial
 - Even a few incorrect matches can ruin the 3D reconstruction.
- Threshold sensitivity
 - o Small changes in classifier thresholds can significantly impact reconstruction;
 - o Different scenes require different classifier thresholds.
- Limited generalization
 - o Trained on landmark images, the method struggles with everyday scenes.

Doppelgangers++: Expand Training Data

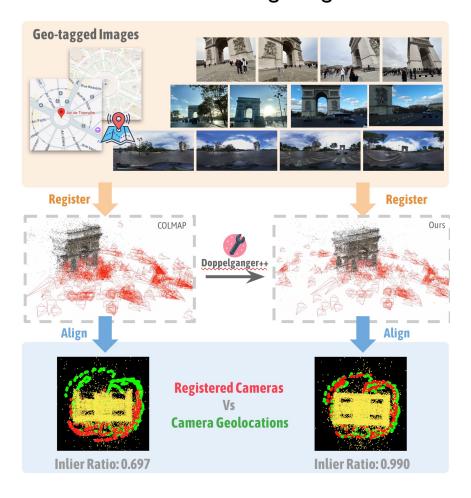
VisymScenes Dataset


Includes residential areas, landmarks, historical sites, business districts, and more; Recorded with GPS/IMU metadata;

Complement the notable landmarks available on Wiki Commons.

Mined ~53K doppelganger and true matching pairs leveraging their recorded geo-locations and viewing directions.

Doppelgangers++: Improved Doppelganger Classifier


Leverage multi-level geometric features of a SOTA pairwise image matching model (MASt3R) With a Transformer classification head

The classifier can be seamlessly integrated into SfM pipelines (E.g. COLMAP, MASt3R-SfM)

Evaluating Doppelganger Correction in SfM

Prior work uses manual inspection We introduce an automated, geotag-based method for validating reconstructed models

Image registration

- We collect geo-tagged images from Mapillary near the reconstructed scene;
- Register geo-tagged Mapilllary images to the SfM model.

Alignment cameras

- Registered cameras are aligned with their geolocations using RANSAC;
- We use <u>inlier ratio</u> as an indicator for accuracy.

Incorrect models have lower inlier ratio (largely misaligned trajectories);

Correct models have higher inlier ratio (better aligned trajectories)

Results

Evaluation on Pairwise Visual Disambiguation

In-domain test: DG, VisymScenes

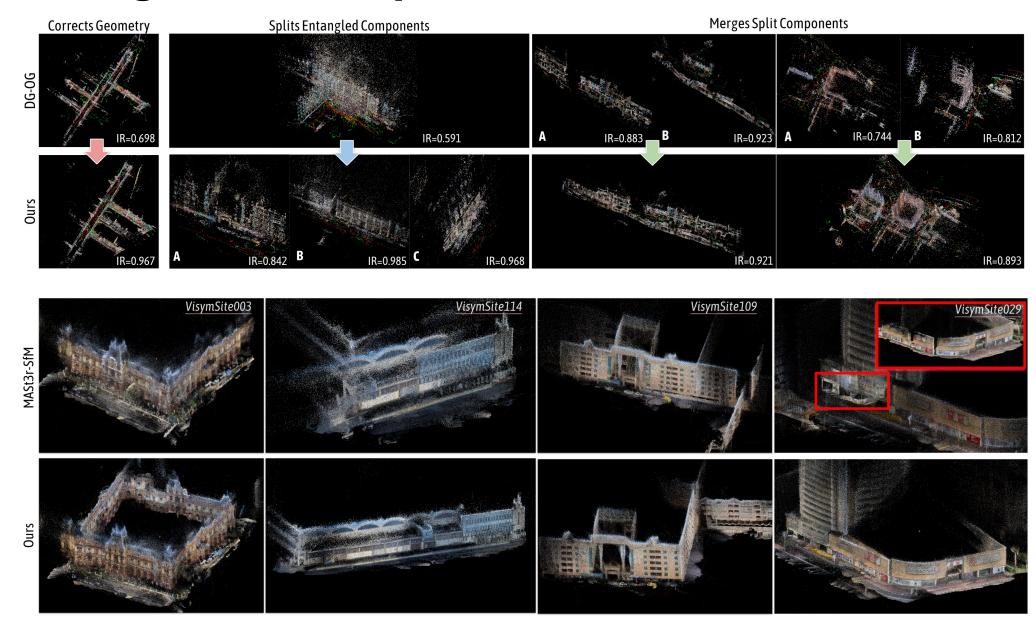
Out-of-domain test: Mapillary

Test Data	Method	Metrics (trained on DG / trained on DG + VisymScenes)					
		AP↑	ROC AUC↑	Prec@Recall=0.85↑	Recall@Prec=0.99↑		
DG	DG-OG	0.954 / 0.956	0.944 / 0.947	0.901 / 0.910	0.611 / 0.614		
	Ours	0.980 / 0.981	0.981 / 0.981	0.972 / 0.982	0.690 / 0.642		
VisymScenes	DG-OG	0.816 / 0.938	0.726 / 0.921	0.498 / 0.831	0.340 / 0.623		
	Ours	0.936 / 0.991	0.909 / 0.990	0.892 / 0.999	0.542 / 0.901		
Mapillary	DG-OG	0.566 / 0.692	0.581 / 0.701	0.523 / 0.572	0.003 / 0.000		
	Ours	0.950 / 0.968	0.944 / 0.958	0.927 / 0.942	0.310 / 0.736		

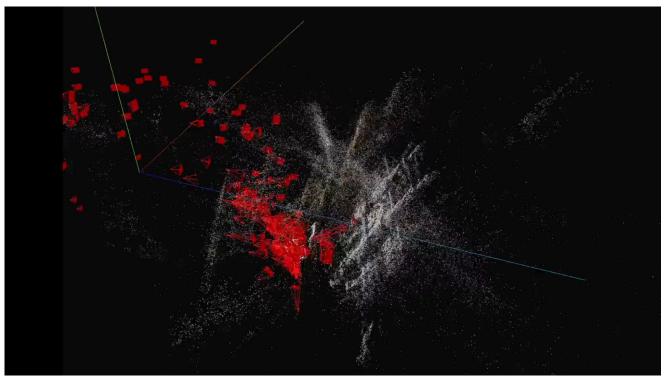
Dataset expansion improves Doppelganger classifier performance Ours is more generalized than previous work (DG-OG)

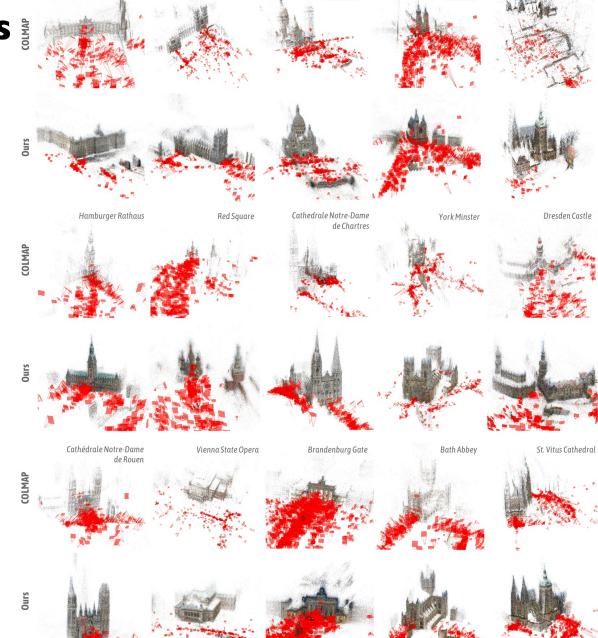
Results

Evaluation on SfM Reconstruction Disambiguation


- Classifier threshold τ =0.8 is used unless otherwise stated.
- The '+' symbol indicates split reconstruction components;

	# SfM-registered Images			Inlier Ratio (Sec. 3.3)		
Test Scenes	COLMAP	DG-OG	Ours	COLMAP	DG-OG	Ours
Alexander Nevsky Cathedral [6]	447	444	447	0.565	1.0	1.0
Arc de Triomphe [6]	424	384	423	0.697	0.966	0.990
Berliner Dom [6]	1603	1588	1606	0.709	0.987	0.992
Big Ben [6]	398	379	394	0.564	0.827	0.831
Church on Spilled Blood [6]	273	84+94 (τ =0.97)	157+106	0.542	0.881	0.962
Radcliffe Camera [6]	281	91+84	94+186	0.495	0.955	0.970
Seville [18]	1498	585+272+515	615+303+552	0.450	0.772	0.854
Brandenburg Gate [14]	2137	1361+570	1398+603	0.440	0.900	0.909
Palacio de Comunicaciones [14]	727	$307+80\ (\tau=0.6)$	308+84	0.229	0.823	0.934
Ponte di Rialto [14]	652	538+101 (τ =0.6)	540+107	0.627	0.834	0.844
York Minster [14]	636	200+362	206+284	0.727	0.858	0.901
Town Hall Tower, Kraków [14]	298	255	280	0.609	0.731	0.838
Belvedere (Vienna) [14]	1038	851 (fail)	457+500	0.521	0.451	0.874
Reichstag (building) [14]	1504	997+310	1024+356	0.469	0.804	0.862
St. Vitus Cathedral [14]	752	673	692	0.853	0.909	0.933
Royal Liver Building [14]	212	171	180	0.7	1.0	1.0
VisymSite0010	1544	520+290	1446	0.770	0.820	0.913
VisymSite0023	849	471+81	566+82	0.867	0.848	0.942
VisymSite0028	450	238+179	267+120	0.818	0.711	0.909
VisymSite0042	540	206+207	467	0.863	0.924	0.963
VisymSite0109	1245	237+458+78	239+612+127	0.857	0.862	0.927


Previous work (DG-OG) require frequent threshold adjustment;


Ours is more discriminative and generalized; and has better reconstruction correctness and completeness.

SfM Disambiguition on VisymScenes

SfM Disambiguition on MegaScenes

Royal Palace of Madrid

