

UNICL-SAM: Uncertainty-Driven In-Context Segmentation with Part Prototype Discovery

Dianmo Sheng¹, Dongdong Chen², Zhentao Tan¹, Qiankun Liu³, Qi Chu¹, Tao Gong^{1*}, Bin Liu¹, Jing Han⁴, Wenbin Tu⁴, Shengwei Xu⁵, Nenghai Yu¹

Motivation

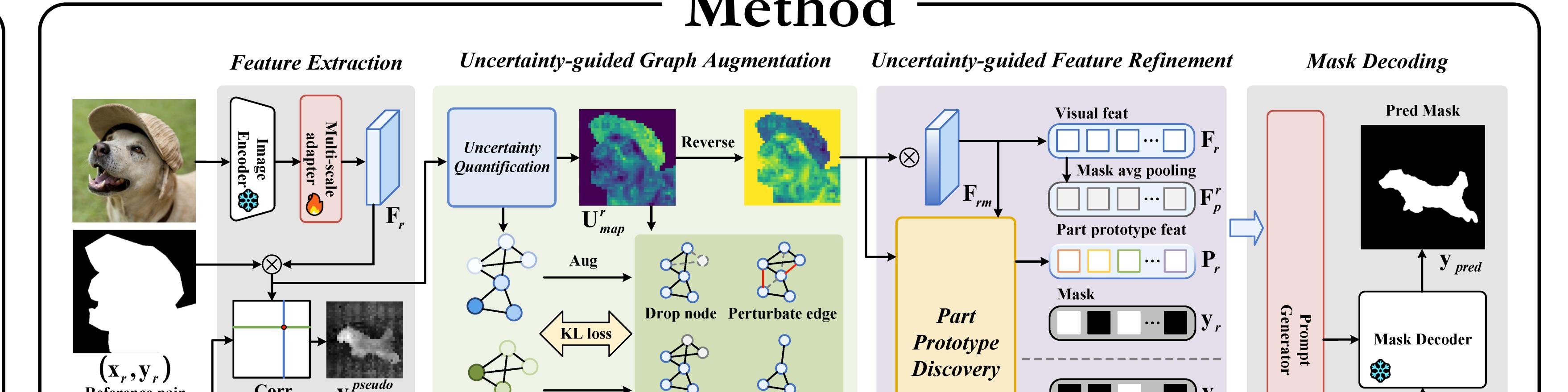
Simulated real-world degradation support examples (Our robustness simulation tests).

Real-world applications present challenges due to the variability of support examples, which often exhibit quality issues resulting from various sources and inaccurate labeling. Existing in-context segmentation methods will experience significant performance degradation when encountering such samples.

How to extract more robust representations from these examples has always been one of the goals of incontext visual learning.

Contributions

- We propose a *probabilistic uncertainty module* to model input data distributions, further using uncertainty-guided optimization strategies to enhance feature reliability.
- We introduce part prototypes to effectively extract knowledge from reference examples by aggregating local semantics.
- UNICL-SAM performs superior performance on traditional benchmarks and shows good generalization capabilities on conducted robustness simulation tests.



Overview of UNICL-SAM. With the fine-grained features, UNICL-SAM performs uncertainty quantification to model the input distribution and produce the estimated uncertainty map. The corresponding uncertainty-guided graph augmentation and feature refinement stages tend to learn robust graph representations by mitigating the impact of high uncertainty areas. Further, UNICL-SAM conducts part prototype discovery to get the part prototypes with the other three kinds of in-context instructions. Finally, the in-context instructions are fed into the query prompt generator to get the in-context prompt for guiding the mask decoder to predict segmentation results.

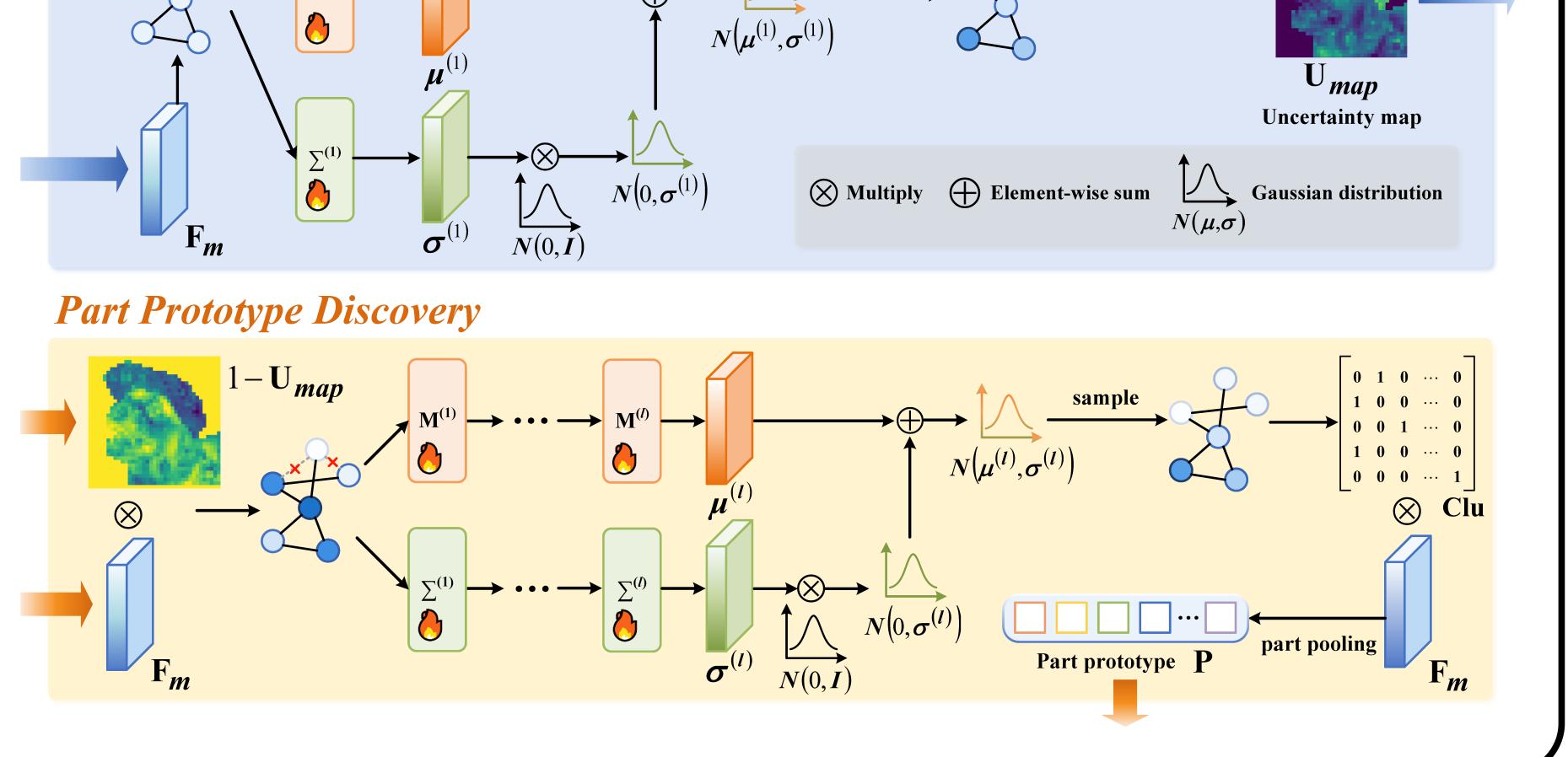
Uncertainty Quantification

Uncertainty Quantification

 Our proposed uncertainty Gaussian graph network (UGGN) maps the foreground graph representation to a high-dimensional Gaussian distribution and obtains the uncertainty estimate map through parameter resampling and quantization.

Part Prototype Discovery

 Through systematic classification of nodes within the uncertainty-optimized foreground graph representation, each node is assigned to its corresponding cluster category. Then we obtain the part prototypes by averaging the node features in the same cluster.



Mask avg pooling

[1] Hong et al., Cost aggregation with 4d convolutional swin transformer for few-shot segment anything with one shot using all-purpose feature matching, in ICLR 2024. [3] Liu et al., A Simple Image Segmentation Framework via In-Context Examples, in NeurIPS 2024. [4] Min et al., Hypercorrelation squeeze for few-shot segmentation, in ICCV 2021. [5] Sheng et al., Towards more unified incontext visual understanding, in CVPR 2024. [6] Sun et al., VRP-SAM: SAM with visual reference prompt, in CVPR 2024. [7] Wang et al., Images speak in images: A generalist painter for in-context visual learning, in CVPR 2023. [8] Wang et al., SegGPT: Segmenting Everything In Context, in ICCV 2023. [9] Zhang et al., Feature- proxy transformer for few-shot segmentation, in NeurIPS 2022. [10] Zhang et al., Personalize segment anything model with one shot, in ICLR 2024.

Experimental Results

Main results & Ablation studies

Mathada	Dagalution	Trainable	COCO-20		F35-1000		LV13-92	
Methods	Resolution	Params	one-shot	few-shot	one-shot	few-shot	one-shot	few-shot
			specia	list model				
HSNet [4]	480	28M	41.7*	50.7*	86.5*	88.5*	17.4	22.9
VAT [1]	417	52M	42.9*	49.4*	90.3*	90.8*	18.5	22.7
FPTrans [9]	480	139M	56.5*	65.5*	-	-	-	-
			genera	list model				
Painter [7]	448	354M	33.1	32.6	61.7	62.3	10.5	10.9
SegGPT [8]	448	354M	56.1	<u>67.9</u>	85.6	89.3	18.6	25.4
PerSAM [10]	-	2 M	23.5	-	75.6	-	18.4	-
Matcher [2]	896	_	52.7	60.7	<u>87.0</u>	<u>89.6</u>	33.0	<u>40.0</u>
VRP-SAM [6]	512	1.6M	53.9	-	-	-	-	-
ICVU [5]	256	309M	58.0	-	-	_	-	-
SINE [3]	896	19 M	<u>64.5</u>	66.1	-	-	31.2	35.5
UNICL-SAM	518	55M	77.8	78.7	84.0	86.3	34.1	37.4

Comparison with state-of-the-art specialist and generalist models on few-shot semantic segmentation benchmarks.

Multi-scale	Part Prototype	Uncertainty	$COCO-20^i$		
Feature Adapter	Discovery	Probabilistic Modeling	MIoU ↑	MAE	
×	×	×	71.77	0.039	
×	×	\checkmark	72.99	0.03	
×	\checkmark	×	72.41	0.038	
\checkmark	×	\checkmark	73.28	0.030	
\checkmark	\checkmark	×	73.78	0.030	
×	\checkmark	\checkmark	74.61	0.034	
\checkmark	\checkmark	\checkmark	74.64	0.034	
 Ahlation	of prope	osed compo	nants	1	

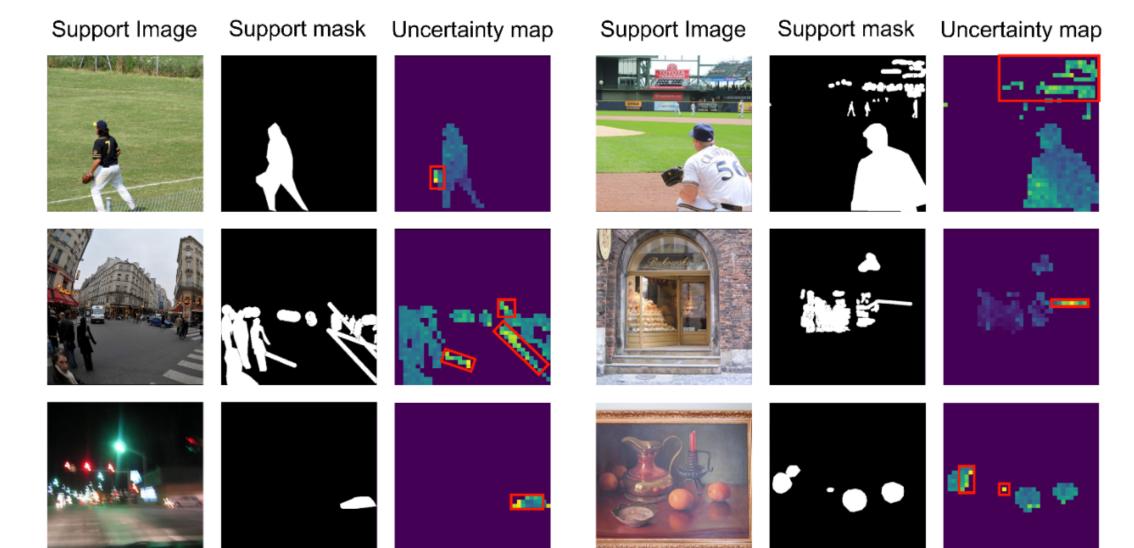
Un-guided	Un-guided	${ m COCO} ext{-}20^i$		
Graph Augmentation	Feature Refinement	MIoU ↑	MAE ↓	
×	×	73.78	0.036	
\checkmark	×	73.82	0.036	
×	\checkmark	73.99	0.035	
\checkmark	\checkmark	74.64	0.034	

Ablation of uncertainty-guided optimization

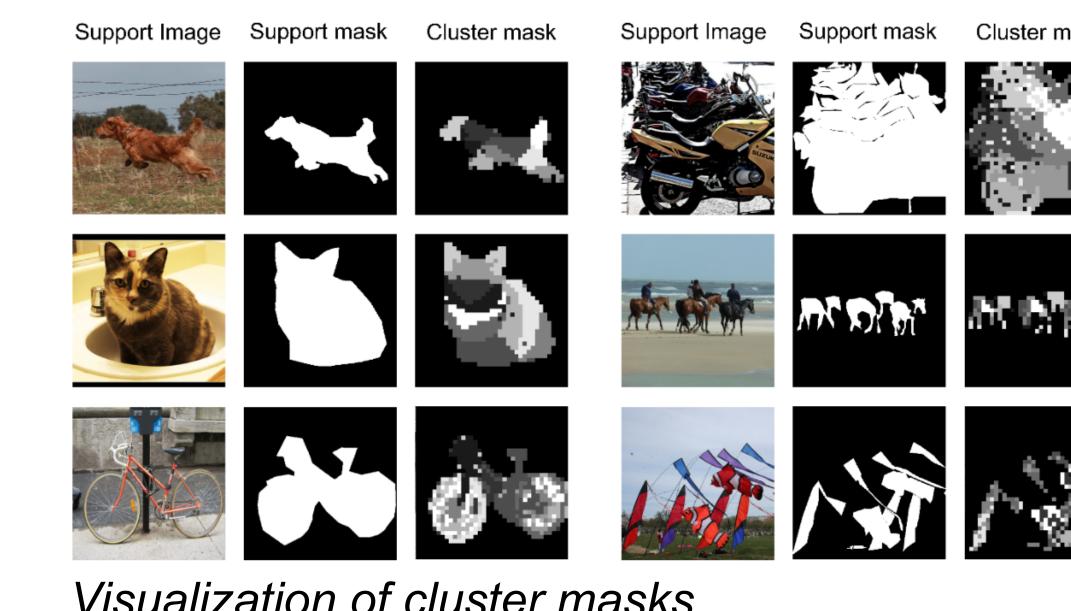
Robustness comparison with advanced in-context segmentation generalists

Methods	Resolution	Trainable	Clean	Support Image				Support Label	Ava Doclina	Avg. Decline Ratio	
Methods	Kesolution	Params	Clean	Color	Blurness	Compression	Space	Domain shift	Deformation	Avg. Decime	Avg. Decime Ram
SegGPT	[8] 448	354M	62.1	-2.7	-3.0	-2.7	-7.8	-6.2	-8.8	-5.2	-8.4%
Matcher [[<mark>2</mark>] 896	-	41.6	-0.5	-2.5	-6.5	-3.8	-5.3	-6.2	-4.1	-9.9%
SINE [3]	896	19M	70.0	-0.7	-1.7	-5.9	-2.8	-6.5	-12.4	-5.0	-7.1%
UNICL-9	SAM 518	55M	79.8	-1.0	-1.8	-3.0	-3.3	-4.8	-5.0	-3.1	-3.9%

Visualization of intermediate outputs

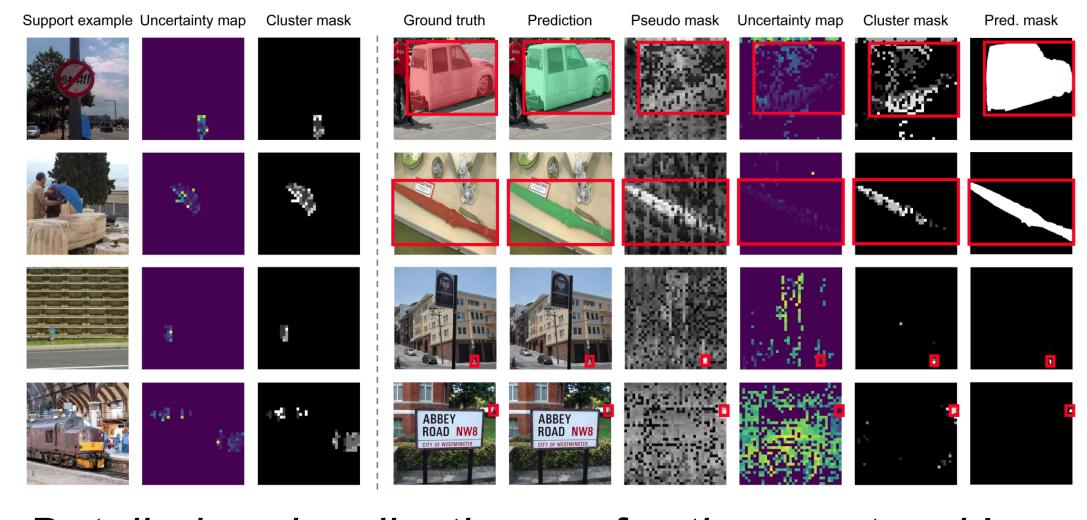


Visualization of uncertainty maps.

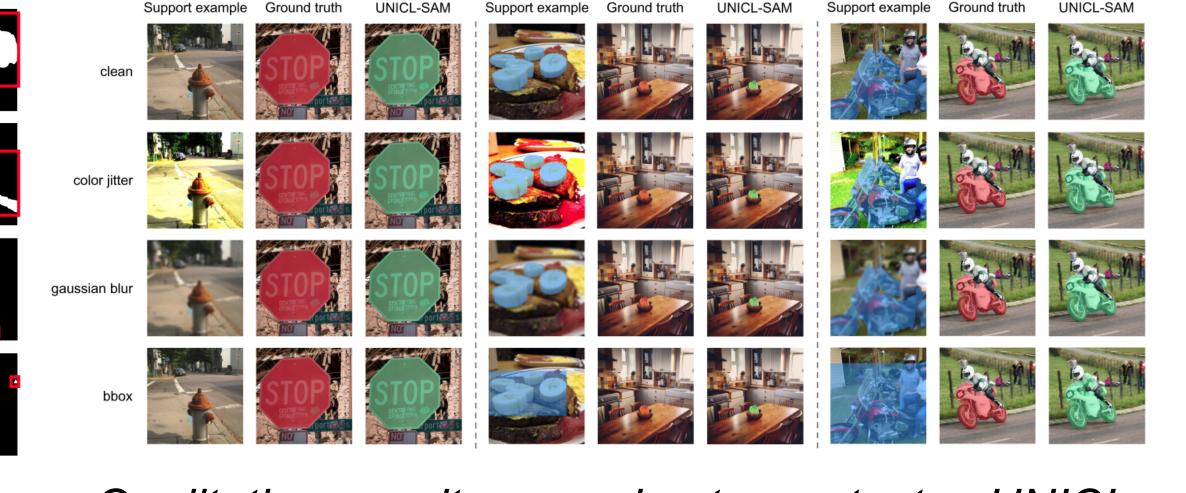


Visualization of cluster masks.

Qualitative results and analysis



Detailed visualization of the network's intermediate outputs, including pseudo masks, uncertainty maps, and clustered masks.



Qualitative results on robustness tests. UNICL-SAM demonstrates strong robustness across diverse degradation scenarios.