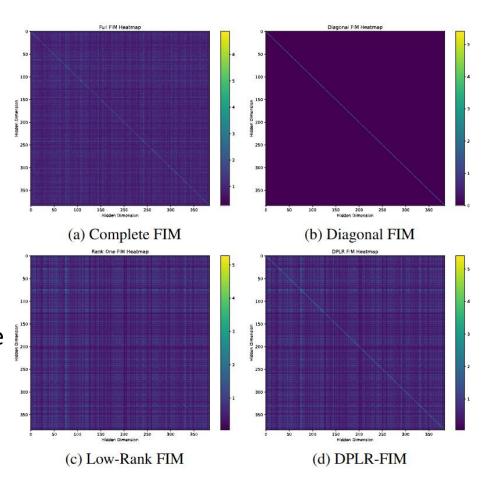


FIMA-Q: Post-Training Quantization for Vision Transformers by Fisher Information Matrix Approximation

Zhuguanyu Wu^{1,2*}, Shihe Wang^{1,2*}, Jiayi Zhang^{1,2}, Jiaxin Chen^{1,2}, Yunhong Wang^{1,2}

¹State Key Laboratory of Virtual Reality Technology and Systems, Beihang University, China

²School of Computer Science and Engineering, Beihang University, Beijing, China



Problems

- Diagonal approximation ignores the potentially useful off-diagonal information
 - > Hessian-guided quantization loss:

$$\min \left[-\Delta \mathbf{z}^{(b)} \ \mathbf{H}^{(\mathbf{z}^{(b)})} \Delta \mathbf{z}^{(b)} \right]$$

- > All approximations in BRECQ:
- 1. Using the Fisher information matrix (FIM) to approximate the negative Hessian matrix.
- 2. Using the diagonal FIM to approximate the full FIM.
- 3. Using the **square of the task loss gradient** to approximate the diagonal of the FIM.
- 4. Using the gradient of KL divergence instead of the task loss gradient.

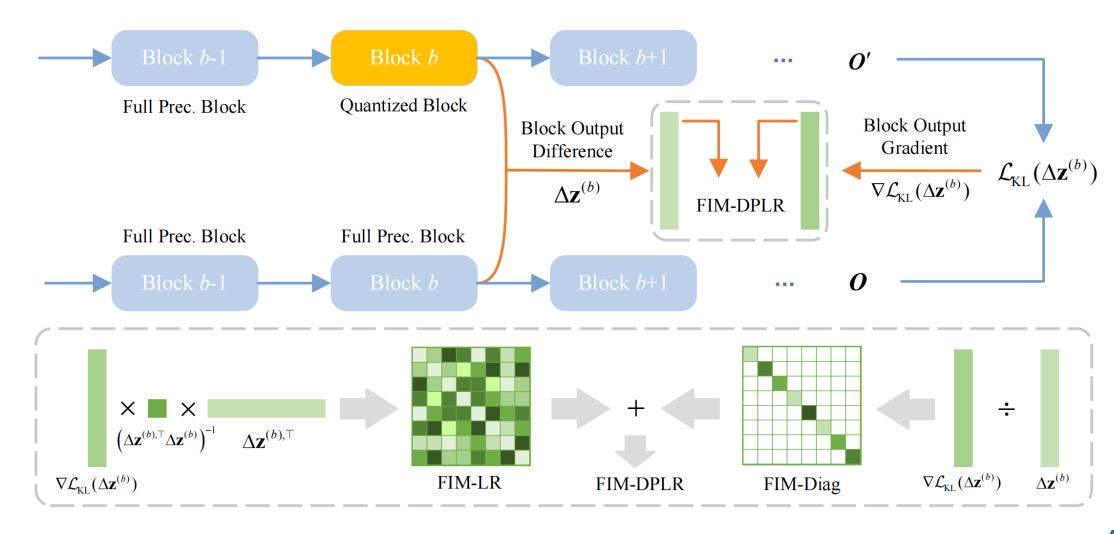
Problems

- FIM is regarded as a sample-dependent matrix, and the second variance termis omitted
 - > Hessian-guided quantization loss:

$$\min \left[-\Delta \mathbf{z}^{(b)} \ \mathbf{H}^{(\mathbf{z}^{(b)})} \Delta \mathbf{z}^{(b)} \right]$$

- > All approximations in BRECQ:
- 1. Using the Fisher information matrix (FIM) to approximate the negative Hessian matrix.
- 2. Using the **diagonal FIM** to approximate the full FIM.
- 3. Using the **square of the task loss gradient** to approximate the diagonal of the FIM.
- 4. Using the gradient of KL divergence instead of the task loss gradient.

$$\operatorname{Diag}(\mathbf{F}^{(\mathbf{z}^{(b)})}) = \left[\left(\nabla_{\mathbf{z}^{(b)}} \log p(y; \mathbf{z}^{(b)}) \right)^{2} \right]$$


$$= \left[\left(\nabla_{\mathbf{z}^{(b)}} \log p(y; \mathbf{z}^{(b)}) \right) \right]^{2}$$

$$+ \operatorname{Var}(\nabla_{\mathbf{z}^{(b)}} \log p(y; \mathbf{z}^{(b)}))$$

Overview

■ Relationship Between FIM and KL

• FIM is linearly proportional to the gradient of KL divergence.

$$\mathbf{F}^{(\mathbf{z}^{(b)})} = \mathbf{E} \left[\left(\nabla_{\mathbf{z}^{(b)}} \log p(y; \mathbf{z}^{(b)}) \right) \left(\nabla_{\mathbf{z}^{(b)}} \log p(y; \mathbf{z}^{(b)}) \right)^{\cdot} \right],$$

$$\mathbf{L}_{\mathrm{KL}}(\Delta \mathbf{z}^{(b)}) = D_{\mathrm{KL}}(p(y; \mathbf{z}^{(b)}) \| p(y; \mathbf{z}^{(b)} + \Delta \mathbf{z}^{(b)})) = \sum_{x} p(y; \mathbf{z}^{(b)}) \log \frac{p(y; \mathbf{z}^{(b)})}{p(y; \mathbf{z}^{(b)} + \Delta \mathbf{z}^{(b)})}.$$

$$\mathbf{KL}(\Delta \mathbf{z}^{(b)}) = \frac{1}{2} \Delta \mathbf{z}^{(b)}, \ \mathbf{F}^{(\mathbf{z}^{(b)})} \Delta \mathbf{z}^{(b)}$$

$$\nabla_{\mathrm{KL}}(\Delta \mathbf{z}^{(b)}) = \frac{\partial_{\mathrm{KL}}(\Delta \mathbf{z}^{(b)})}{\partial \Delta \mathbf{z}^{(b)}} = \mathbf{F}^{(\mathbf{z}^{(b)})} \Delta \mathbf{z}^{(b)}$$

Approximations of FIM

• The rank-one approximation(FIM-OR):

- $ightharpoonup \operatorname{We set}: \ \mathbf{F}_{\operatorname{rank}-1}^{(\mathbf{z}^{(b)})} = uu^{\bullet}, \ u \in \mathbb{R}^{a \times 1}$
- ➤ Based on the relationship between the Fisher information matrix and the KL divergence gradient, we have:

$$u = \frac{\nabla_{\text{KL}}(\Delta \mathbf{z}^{(b)})}{\sqrt{\nabla_{\text{KL}}(\Delta \mathbf{z}^{(b)}) \Delta \mathbf{z}^{(b,i)}}}$$

Hessian-guided quantization loss:

$$_{\text{rank-1}} = \frac{\left(\Delta \mathbf{z}^{(b,i)} \nabla_{\text{KL}} (\Delta \mathbf{z}^{(b)})\right)^{2}}{\nabla_{\text{KL}} (\Delta \mathbf{z}^{(b)}) \Delta \mathbf{z}^{(b,i)}}$$

• The low-rank approximation (FIM-LR):

ightharpoonup The Moore-Penrose inverse of $\Delta \mathbf{z}^{(b)}$:

$$\Delta \mathbf{z}^{(b),+} = \left(\Delta \mathbf{z}^{(b)} \mathbf{\hat{z}}^{(b)}\right)^{-1} \Delta \mathbf{z}^{(b)}$$

Hessian-guided quantization loss:

$$_{\mathrm{rank}-k} = \Delta \mathbf{z}^{(bi)} \ \mathbf{F}^{(\mathbf{z}^{(b)})} \Delta \mathbf{z}^{(b,i)} = A \cdot B \cdot C$$
 $A = \Delta \mathbf{z}^{(b,i)} \ \nabla_{\mathrm{KL}} (\Delta \mathbf{z}^{(b)}),$
 $B = \left(\Delta \mathbf{z}^{(b)} \ \Delta \mathbf{z}^{(b)}\right)^{-1},$
 $C = \Delta \mathbf{z}^{(b)} \ \Delta \mathbf{z}^{(b,i)}.$

Approximations of FIM

• The diagonal approximation (FIM-Diag):

$$\mathbf{F}_{\text{Diag}}^{(\mathbf{z}^{(b)})} = \text{Diag}\left(\frac{\nabla L_{\text{KL}}(\Delta \mathbf{z}^{(b)})_{1}}{\Delta \mathbf{z}_{1}^{(b)}}, \cdots, \frac{\nabla L_{\text{KL}}(\Delta \mathbf{z}^{(b)})_{a}}{\Delta \mathbf{z}_{a}^{(b)}}\right),$$

$$L_{\text{diag}} = \left(\frac{\nabla L_{\text{KL}}(\Delta \mathbf{z}^{(b)})}{\Delta \mathbf{z}^{(b)}}\right)^{\cdot} \left(\Delta \mathbf{z}^{(b,i)}\right)^{2}$$

• The diagonal plus low-rank approximation (FIM-DPLR):

$$\mathbf{F}_{\mathrm{DPLR}}^{(\mathbf{z}^{(b)})} = \alpha \cdot \mathbf{F}_{\mathrm{rank}-k}^{(\mathbf{z}^{(b)})} + (1 - \alpha) \cdot \mathbf{F}_{\mathrm{diag}}^{(\mathbf{z}^{(b)})}$$

$$L_{DPLR} = \alpha \cdot L_{rank-k} + (1-\alpha) \cdot L_{diag}$$

Algorithm 1 Pipeline of Block-wise FIMA-Q.

Input: Full-precision model \mathcal{M} , full-precision block $\mathcal{B}_{\text{full}}$, quantized block $\mathcal{B}_{\text{quant}}$, calibration data $\mathcal{D}_{\text{calib}}$ rank r, maximal iteration number max_iter, and iteration interval x.

Output: The optimized quantized block $\mathcal{B}_{\mathrm{quant}}$.

- # Calculate Rank-One FIM:
- 1: Generate the raw input X_{raw} and output $\mathbf{z}^{(b)}$ of $\mathcal{B}_{\text{full}}$ the quantized input X_{quant} of $\mathcal{B}_{\text{quant}}$ based on $\mathcal{D}_{\text{calib}}$.
- 2: Generate the model output O_{raw} and O_{quant} by performing forward propagations through the network starting from \mathcal{B}_{raw} and $\mathcal{B}_{\text{quant}}$ based on X_{raw} , respectively.
- 3: Calculate the perturbation $\Delta \mathbf{z}^{(b)}$ and the loss $\mathcal{L}_{\mathrm{KL}}(\Delta \mathbf{z}^{(b)})$ based on Eq. (9), and perform backward propagation to compute the gradient $\nabla \mathcal{L}_{\mathrm{KL}}(\Delta \mathbf{z}^{(b)})$.
 - # Perform Quantization Reconstruction:
- 4: Initialize the current rank k=1, and the next data iteration y=x.
- 5: for $i = 1, \dots, \text{max_iter do}$
- 6: if k < r and i = y then
- 7: Calculate $\Delta \mathbf{z}^{(b)'}$ and $\nabla \mathcal{L}_{\mathrm{KL}}(\Delta \mathbf{z}^{(b)'})$.
- 8: Calculate B in Eq. (19).
- 9: Set k := k + 1 and y := y + x.
- 10: **end if**
- 11: Calculate \mathcal{L}_{DPLR} with Eq. (21) and perform BP.
- 12: Update all the AdaRound weights by [24] and activation scaling factors in \mathcal{B}_{quant} .
- 13: **end for**

Main Results

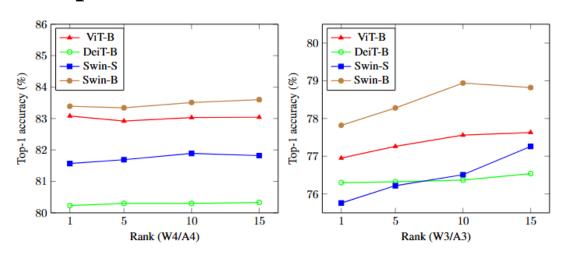
• Results on ImageNet

Method	OP	SQ	W/A	ViT-S	ViT-B	DeiT-T	DeiT-S	DeiT-B	Swin-S	Swin-B
Full-Prec	-	-	32/32	81.39	84.54	72.71	79.85	81.80	83.23	85.27
PTQ4ViT	×	✓	3/3	0.10	0.10	3.50	0.10	31.06	28.69	20.13
RepQ-ViT	×	\checkmark	3/3	0.10	0.10	0.10	0.10	0.10	0.10	0.10
AdaLog	×	\checkmark	3/3	13.88	37.91	31.56	24.47	57.47	64.41	69.75
I&S-ViT	\checkmark	\checkmark	3/3	45.16	63.77	41.52	55.78	73.30	74.20	69.30
DopQ-ViT	\checkmark	\checkmark	3/3	54.72	65.76	44.71	59.26	74.91	74.77	69.63
QDrop*	\checkmark	×	3/3	41.05	74.75	46.88	50.95	72.97	74.67	76.57
FIMA-Q (Ours)	\checkmark	×	3/3	64.09	77.63	55.55	69.13	76.54	77.26	78.82
PTQ4ViT	×	✓	4/4	42.57	30.69	36.96	34.08	64.39	76.09	74.02
APQ-ViT	×	\checkmark	4/4	47.95	41.41	47.94	43.55	67.48	77.15	76.48
RepQ-ViT	×	\checkmark	4/4	65.05	68.48	57.43	69.03	75.61	79.45	78.32
ERQ	×	\checkmark	4/4	68.91	76.63	60.29	72.56	78.23	80.74	82.44
IGQ-ViT	×	\checkmark	4/4	73.61	79.32	62.45	74.66	79.23	80.98	83.14
AdaLog	×	\checkmark	4/4	72.75	79.68	63.52	72.06	78.03	80.77	82.47
I&S-ViT	\checkmark	\checkmark	4/4	74.87	80.07	65.21	75.81	79.97	81.17	82.60
DopQ-ViT	\checkmark	\checkmark	4/4	75.69	80.95	65.54	75.84	80.13	81.71	83.34
QDrop*	\checkmark	×	4/4	71.84	82.63	65.27	72.64	79.96	81.21	82.99
OASQ	\checkmark	×	4/4	72.88	76.59	66.31	76.00	78.83	81.02	82.46
FIMA-Q (Ours)	\checkmark	×	4/4	76.68	83.04	66.84	76.87	80.33	81.82	83.60

Main Results

• Results on COCO

	Opt	SQ	W/A	Mask R-CNN				Cascade Mask R-CNN			
Method				Swin-T		Swin-S		Swin-T		Swin-S	
				AP^b	AP^{m}	AP^b	AP^{m}	AP^b	AP^{m}	AP^b	AP^{m}
Full-Precision	-	-	32/32	46.0	41.6	48.5	43.3	50.4	43.7	51.9	45.0
Baseline	×	×	4/4	34.6	34.2	40.8	38.6	45.9	40.2	47.9	41.6
PTQ4ViT	×	\checkmark	4/4	6.9	7.0	26.7	26.6	14.7	13.5	0.5	0.5
APQ-ViT	×	\checkmark	4/4	23.7	22.6	44.7	40.1	27.2	24.4	47.7	41.1
RepQ-ViT	×	\checkmark	4/4	36.1	36.0	$44.2_{42.7}\dagger$	40.2	47.0	41.1	49.3	43.1
ERQ	×	\checkmark	4/4	36.8	36.6	43.4	40.7	47.9	42.1	50.0	43.6
I&S-ViT	\checkmark	\checkmark	4/4	37.5	36.6	43.4	40.3	48.2	42.0	50.3	43.6
DopQ-ViT	\checkmark	\checkmark	4/4	37.5	36.5	43.5	40.4	48.2	42.1	50.3	43.7
QDrop*	\checkmark	X	4/4	36.2	35.4	41.6	39.2	47.0	41.3	49.0	42.5
FIMA-Q (Ours)	✓	×	4/4	38.7	37.8	44.2	41.1	48.7	42.5	50.4	43.7



■ Ablation Study

Comparison of different quantization losses

#Bits (W/A)	Method	ViT-S	ViT-B	DeiT-T	DeiT-S	DeiT-B	Swin-S	Swin-B
4/4	MSE	71.84	82.63	65.27	72.64	79.96	81.21	82.99
	BRECQ-FIM	63.70	76.26	61.99	72.52	76.59	80.52	81.80
	Diag-FIM (Ours)	75.88	83.02	66.81	76.79	80.19	81.18	83.35
	LR-FIM (Ours)	76.47	83.04	66.78	76.66	80.30	81.60	83.15
	DPLR-FIM (Ours)	76.65	83.04	66.84	76.87	80.33	81.82	83.60

Comparison of different ranks

The training time cost (GPU Minutes) using different ranks

Model	Qdrop*	Ours							
1120401	Qurop	k=1	k=5	k=10	k=15				
DeiT-T	100	100	115	150	180				
DeiT-S	105	105	120	160	225				
DeiT-B	145	150	160	240	310				
Swin-S	160	165	235	360	420				
Swin-B	170	180	250	420	480				

- ☐ In this paper, we propose a novel approach dubbed FIMA-Q for post-training quantization of Vision Transformers. Specifically, we propose a more accurate approximation method for FIM.
- Specifically, we first demonstrate that FIM is proportional to the gradient of KL-divergence, based on which we develop a novel estimation method dubbed DPLR-FIM by integrating both the diagonal and off-diagonal information.
- Extensive experimental results across distinct vision transformer architectures validate the effectiveness of FIMA-Q for various visual tasks. The results reveal that our method has achieved significant performance improvements in the cases of low-bit quantization, especially with an average improvement of 5.31%, compared to the current state-of-the-art approaches in 3-bit quantization.

Thanks for your listening

